Combined arterial imaging technology reveals both structural and metabolic details

November 6, 2011
Combined optical frequency-domain imaging and near-infrared fluorescence image of the inner surface of a rabbit artery shows an implanted arterial stent (blue) and fibrin deposits (red-yellow). By revealing both structural and molecular detail, OFDI-NIRF may improve diagnosis of coronary artery disease and help evaluate stent healing. Credit: Hongki Yoo, PhD, and Jin Won Kim, MD, PhD; laboratories of Gary Tearney MD, PhD, and Farouc Jaffer, MD, PhD, Massachusetts General Hospital

A new device that combines two microimaging technologies can reveal both the detailed anatomy of arterial linings and biological activities that, in coronary arteries, could indicate the risk of heart attacks or the formation of clots in arterial stents. In their report receiving early online release in Nature Medicine, Massachusetts General Hospital (MGH) investigators describe using an intra-arterial catheter combining both optical frequency-domain imaging (OFDI) and near-infrared fluorescence (NIRF) imaging to obtain simultaneous structural and molecular images of internal arterial surfaces in rabbits.

"The ability to measure both microstructural and molecular information from the same location in the could provide a much better for assessing vascular pathology, information that is highly relevant for diagnosing , vulnerable plaque and evaluating stent healing," says Gary Tearney, MD, PhD, of the Wellman Center for Photomedicine and the MGH Pathology Department, co-senior author of the article.

Developed at the Wellman Center, OFDI utilizes a fiberoptic probe with a constantly rotating laser tip to create detailed molecular images of interior surfaces such as arterial walls. While OFDI can be used to guide procedures like coronary artery angioplasty and to confirm the correct positioning of metal stents inserted to keep cleared arteries open, its ability to determine important details of stent healing is limited. Properly healed stents become covered with endothelium, the same tissue that normally coats the arterial surface; but stents can become coated with the clot-inducing protein fibrin, which may put patients at risk for stent thrombosis – a clot that blocks bloodflow through the stent – and OFDI cannot determine the molecular composition of tissue covering a stent.

Intravascular NIRF technology was developed in the MGH Cardiovascular Research Center (CVRC), in collaboration with colleagues at the Technical University of Munich, and uses special imaging agents to detect cells and molecules involved in vascular processes like clotting and inflammation. Recognizing the potential advantage of combining both technologies, the Wellman researchers worked with the MGH-CVRC team, led by Farouc Jaffer, MD, PhD, of the MGH Heart Center to develop an integrated OFDI-NIRF imaging system incorporated in the same intravascular probe used for OFDI alone.

The team first confirmed that the system could provide detailed structural images of a stent implanted in a cadaveric human and could accurately identify the presence of fibrin on the stent. In a series of experiments in living rabbits, the OFDI-NIRF system was able to detect fibrin on implanted stents – including areas where it was not detected by OFDI alone – and to identify the presence of both atherosclerotic plaques and enzymatic activity associated with inflammation and plaque rupture. The enzyme signal detected by NIRF was not uniform throughout the imaged plaques, indicating biological differences that could be relevant to prognosis and treatment planning.

"At present we are not able to predict which patients may develop stent thrombosis, but integrated OFDI-NIRF can assess many key factors linked to the risk of clot formation," says Jaffer, co-senior author of the report. "If OFDI-NIRF is validated in clinical studies, patients at risk for stent thrombosis could undergo a 'stent checkup' to determine how well the stent is healing. Patients with unhealed stents could be advised to take or continue taking specific anti-clotting medications. Patients with well-healed , on the other hand, could potentially discontinue anti-clotting medications, which can cause excess bleeding." Clinical adoption of the integrated technology will require FDA approval of the molecular contrast agents used in NIRF.

Explore further: Optical technique provides improved 'virtual biopsies' of internal surfaces

Related Stories

Technology Gives 3-D View of Human Coronary Arteries

November 17, 2008

For the first time researchers are getting a detailed look at the interior of human coronary arteries, using an optical imaging technique developed at the Wellman Center for Photomedicine at Massachusetts General Hospital ...

Near infrared fluorescence lights up hidden blood clots

June 6, 2011

Research presented at SNM's 58th Annual Meeting may mark the expansion of a novel imaging agent for an optical technique called near-infrared fluorescence (NIRF), which uses light energy to glean information about cells and ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.