New model for epidemic contagion

January 11, 2012

Humans are considered the hosts for spreading epidemics. The speed at which an epidemic spreads is now better understood thanks to a new model accounting for the provincial nature of human mobility, according to a study published in EPJ B¹. The research was conducted by a team lead by Vitaly Belik from the Massachusetts Institute of Technology, USA, who is also affiliated with the Max Planck Institute for Dynamics and Self-Organization, Germany.

The authors modelled human mobility as recurrent trips centred around a home base. The accounted for the bi-directional travels around a central node, representing their home location and forming a star-shaped network. Previous models were based on diffusion and would imply that people travel randomly in space, not necessarily returning to their home location. These do not accurately describe the high degree of predictability in human mobility.

The researchers found that older diffusion-based models overestimated the speed at which epidemics spread. The speed of epidemics spreading through bi-directional travel, which is dependent on the travel rate, is significantly lower than the speed of epidemics spreading by diffusion.

In addition, the authors discovered that the time individuals spend outside their home locations influences the speed of epidemics spreading and whether an outbreak goes global. This contrasts with previous findings based on diffusion models, which suggested that the rate of between locations is the key factor influencing the global outbreak of epidemics.

This model must be tested against real data on before it can be used as a risk analysis and decision-making tool for epidemics such as avian flu. This model could also be used in areas such as population dynamics and evolutionary biology.

Explore further: SARS: a model disease

More information: Belik V., Geisel T., Brockmann D. (2011). Recurrent hostmobility in spatial epidemics: beyond reaction-diffusion, European Physical Journal B (EPJ B) 84, 579-587 DOI: 10.1140/epjb/e2011-20485-2

Related Stories

SARS: a model disease

November 21, 2007

A new model to predict the spread of emerging diseases has been developed by researchers in the US, Italy, and France. The model, described in the online open access journal BMC Medicine, could give healthcare professionals ...

Climate and cholera

April 2, 2008

Cholera outbreaks may soon be predicted using satellite sensors, paving the way for preemptive medicine in countries that suffer epidemics, says Distinguished University Professor Rita Colwell, speaking today at the Society ...

HIV 'epidemics' emerging in MENA region: study

August 3, 2011

The AIDS virus is spreading like an epidemic in some Middle East and North African countries because of homosexual encounters between men, a study warned on Wednesday.

Recommended for you

In sub-Saharan Africa, cancer can be an infectious disease

August 26, 2016

In 1963, Irish surgeon Denis Parson Burkitt airmailed samples of an unusual jaw tumor found in Ugandan children to his colleague, Anthony Epstein, at Middlesex Hospital in London. Epstein, an expert in chicken viruses and ...

Zika virus may persist in the vagina days after infection

August 25, 2016

The Zika virus reproduces in the vaginal tissue of pregnant mice several days after infection, according to a study by Yale researchers. From the genitals, the virus spreads and infects the fetal brain, impairing fetal development. ...

Team discovers how Zika virus causes fetal brain damage

August 24, 2016

Infection by the Zika virus diverts a key protein necessary for neural cell division in the developing human fetus, thereby causing the birth defect microcephaly, a team of Yale scientists reported Aug. 24 in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.