Music training has biological impact on aging process

January 30, 2012

Age-related delays in neural timing are not inevitable and can be avoided or offset with musical training, according to a new study from Northwestern University. The study is the first to provide biological evidence that lifelong musical experience has an impact on the aging process.

Measuring the automatic of younger and older musicians and non-musicians to speech sounds, researchers in the Auditory Neuroscience Laboratory discovered that older musicians had a distinct neural timing advantage.

"The older musicians not only outperformed their older non-musician counterparts, they encoded the sound stimuli as quickly and accurately as the younger non-musicians," said Northwestern neuroscientist Nina Kraus. "This reinforces the idea that how we actively experience sound over the course of our lives has a profound effect on how our nervous system functions."

Kraus, professor of communication sciences in the School of Communication and professor of neurobiology and physiology in the Weinberg College of Arts and Sciences, is co-author of " offsets age-related delays in neural timing" published online in the journal Neurobiology of Aging.

"These are very interesting and important findings," said Don Caspary, a nationally known researcher on age-related hearing loss at Southern Illinois University School of Medicine. "They support the idea that the brain can be trained to overcome, in part, some age-related hearing loss."

"The new Northwestern data, with recent animal data from Michael Merzenich and his colleagues at University of California, San Francisco, strongly suggest that intensive training even late in life could improve speech processing in older adults and, as a result, improve their ability to communicate in complex, noisy acoustic environments," Caspary added.

Previous studies from Kraus' Auditory Neuroscience Laboratory suggest that musical training also offset losses in memory and difficulties hearing speech in noise -- two common complaints of older adults. The lab has been extensively studying the effects of musical experience on brain plasticity across the life span in normal and clinical populations, and in educational settings.

However, Kraus warns that the current study's findings were not pervasive and do not demonstrate that musician's have a neural timing advantage in every neural response to sound. "Instead, this study showed that musical experience selectively affected the timing of sound elements that are important in distinguishing one consonant from another."

The automatic neural responses to speech sounds delivered to 87 normal-hearing, native English-speaking adults were measured as they watched a captioned video. "Musician" participants began musical training before age 9 and engaged consistently in musical activities through their lives, while "non-musicians" had three years or less of .

Explore further: Musical experience offsets some aging effects

Related Stories

Musical experience offsets some aging effects

May 11, 2011

(Medical Xpress) -- A growing body of research finds musical training gives students learning advantages in the classroom. Now a Northwestern University study finds musical training can benefit Grandma, too, by offsetting ...

Science finding is music to the ears

September 13, 2011

A study led by Canadian researchers has found the first evidence that lifelong musicians experience less age-related hearing problems than non-musicians.

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.