Discovery offers insight into treating viral stomach flu

Shown here is the electron microscopy image reconstruction of mouse norovirus (MNV). The capsid is colored according to the distance from the center of the virion. The inner shell is colored red and yellow while the protruding domain (P domain) is colored in green and blue. The outer most tip (blue) is used by the virus to recognize the host cell and is where many antibodies bind. There is a yellow strand connecting the P domains to the shell of the virus that likely helps keep the P domains highly mobile and has been now observed in three different genera of this family of viruses. Credit: Donald Danforth Plant Science Center, St. Louis.

Twenty million Americans get sick from norovirus each year according to data released last week by the Centers for Disease Control (CDC). Often called vomiting illness, it can spread rapidly on cruise ships, and in dormitories and hospitals. Recent data from the CDC shows deaths from gastrointestinal infections have more than doubled and have become a particular threat to the elderly. The virus is shed in the stool of the infected individual, has a short incubation period and can spread quickly if proper hand washing and other measures are neglected.

While researchers say that vaccines for intestinal infections are among the most difficult to develop, a recent discovery may provide the critical information needed for success. "Sometimes atomic structure gives us clues on how viruses work and how to make better vaccines," said Dr. Thomas Smith, principal investigator, at The Donald Danforth Plant Science Center whose recent article, Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle, in the was selected by the editors as an, "Article of Significant Interest, sighting the extreme norovirus flexibility suggested by these results may allow for broad antibody recognition, a finding of potential vaccine significance."

Smith was part of a team of scientists lead by Dr. Peter D. Kwong, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH). Their research demonstrated that the virus has a structure unlike that of other viruses in that is has protein "lollipop" like structures that likely gives it more flexibility in attaching to cells. There are four genera of this virus family, the Caliciviruses, with the Sapoviruses and Noroviruses being the major cause of severe gastroenteritis in humans.

Dr. Smith and his colleagues discovered that because of the "lollipop" structure, antibodies against the norovirus may be able to bind to the more conserved underside of this floppy structure. This suggests that the extreme flexibility of the norovirus particle may allow for antibody recognition of protected surfaces that might otherwise be buried on intact particles.

This information will give researchers more insight on how to manipulate complex viruses as well as to design and develop better drugs to treat the maladies they cause. Rotovirus, a member of a different viral family but also causes severe gastro intestinal distress primarily in children, is being well controlled by the recent development of a vaccine.

Provided by Donald Danforth Plant Science Center

5 /5 (1 vote)

Related Stories

Countdown to the introduction of a norovirus vaccine

Feb 17, 2012

Noroviruses are believed to make up half of all food-borne disease outbreaks in the United States, causing incapacitating (and often violent) stomach flu. These notorious human pathogens are responsible for 90 percent of ...

Vaccine against epidemic gastroenteritis being tested

Dec 09, 2011

(Medical Xpress) -- A new vaccine is being tested in the US that may protect against the norovirus, which causes "stomach flu" or acute viral gastroenteritis, that can occur in confined living settings such as cruise ships, ...

Deaths from gastroenteritis doubles

Mar 14, 2012

The number of people who died from gastroenteritis (inflammation of the stomach and intestines that causes vomiting and diarrhea) more than doubled from 1999 to 2007. The findings of this study will be presented today at ...

Recommended for you

Better living through mitochondrial derived vesicles

15 hours ago

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

16 hours ago

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

19 hours ago

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments