Immune system 'circuitry' that kills malaria in mosquitoes identified

Researchers at the Johns Hopkins Malaria Research Institute have, for the first time, determined the function of a series proteins within the mosquito that transduce a signal that enables the mosquito to fight off infection from the parasite that causes malaria in humans. Together, these proteins are known as immune deficiency (Imd) pathway signal transducing factors, are analogous to an electrical circuit. As each factor is switched on or off it triggers or inhibits the next, finally leading to the launch of an immune response against the malaria parasite. The study was published June 7 in the journal PLoS Pathogens.

The latest study builds upon earlier work of the research team, in which they found that silencing one gene of this circuit, Caspar, activated Rel2, an Imd pathway transcription factor of the mosquito. The activation of Rel2 turns on the effectors TEP1, APL1 and FBN9 that kill malaria-causing parasites in the mosquito's gut. More significantly, this study discovered the Imd pathway signal transducing factors and effectors that will mediate a successful reduction of parasite infection at their early ookinete stage, as well as in the later oocyst stage when the levels of infection were similar to those found in nature.

"Identifying and understanding how all of the players work is crucial for manipulating the Imd pathway as an invention to control malaria. We now know which genes can be manipulated through genetic engineering to create a malaria resistant mosquito" said George Dimopoulos PhD, professor in the Department of and Immunology at the Johns Hopkins Bloomberg School of Public Health.

To conduct the study, Dimopoulos's team used a method to "knock down" the genes of the Imd pathway. As the components were inactivated, the researchers could observe how the mosquito's resistance to would change.

"Imagine a string of Christmas lights or other circuit that will not work when parts aren't aligned in the right sequence. That is how we are working with the mosquito's immune system," explained Dimopolous. "We manipulate the molecular components of the mosquito's immune system to identify the parts necessary to kill the malaria parasites."

Malaria kills more than 800,000 people worldwide each year. Many are children.

More information: "Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action", PLoS Pathogens.

Related Stories

Malaria immunity trigger found for multiple mosquito species

Mar 13, 2009

(PhysOrg.com) -- Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified a molecular pathway that triggers an immune response in multiple mosquito species capable of stopping ...

Scientists engineer mosquito immune system to fight malaria

Dec 22, 2011

Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments