Tripping the switches on brain growth to treat depression

Depression takes a substantial toll on brain health. Brain imaging and post-mortem studies provide evidence that the wealth of connections in the brain are reduced in individuals with depression, with the result of impaired functional connections between key brain centers involved in mood regulation. Glial cells are one of the cell types that appear to be particularly reduced when analyzing post-mortem brain tissue from people who had depression. Glial cells support the growth and function of nerve cells and their connections.

Over the past several years, it has become increasingly recognized that antidepressants produce positive effects on brain structure that complement their effects on . These structural effects of antidepressants appear to depend, in large part, on their ability to raise the levels of growth factors in the brain.

In a new study, Elsayed and colleagues from the Yale University School of Medicine report their findings on a relatively novel growth factor named fibroblast growth factor-2 or FGF2. They found that FGF2 can increase the number of and block the decrease caused by chronic stress exposure by promoting the generation of new glial cells.

Senior author Dr. Ronald Duman said, "Our study uncovers a new pathway that can be targeted for . Our research shows that we can increase the production and maintenance of glial cells that are important for supporting neurons, providing an enriched environment for proper neuronal function."

To study whether FGF2 can treat depression, the researchers used rodent models where animals are subjected to various natural stressors, which can trigger behaviors that are similar to those expressed by depressed humans, such as despair and loss of pleasure. FGF2 infusions restored the deficit in glial cell number caused by . An underlying molecular mechanism was also identified when the data showed that antidepressants increase glial generation and function via increasing FGF2 signaling.

"Although more research is warranted to explore the contribution of glial cells to the antidepressant effects of FGF2, the results of this study present a fundamental new mechanism that merits attention in the quest to find more efficacious and faster-acting antidepressant drugs," concluded Duman.

"The deeper that science digs into the biology underlying antidepressant action, the more complex it becomes. Yet understanding this complexity increases the power of the science, suggesting reasons for the limitations of antidepressant treatment and pointing to novel approaches to the treatment of depression," commented Dr. John Krystal, Editor of Biological Psychiatry and Chairman of the Department of Psychiatry at the Yale University School of Medicine.

More information: The article is "Antidepressant Effects of Fibroblast Growth Factor-2 in Behavioral and Cellular Models of Depression" by Maha Elsayed, Mounira Banasr, Vanja Duric, Neil M. Fournier, Pawel Licznerski, and Ronald S. Duman (doi: 10.1016/j.biopsych.2012.03.003). The article appears in Biological Psychiatry, Volume 72, Issue 4 (August 15, 2012)

add to favorites email to friend print save as pdf

Related Stories

Study finds how stress, depression can shrink the brain

Aug 12, 2012

Major depression or chronic stress can cause the loss of brain volume, a condition that contributes to both emotional and cognitive impairment. Now a team of researchers led by Yale scientists has discovered ...

Coming undone: How stress unravels the brain's structure

Mar 04, 2009

The helpless behavior that is commonly linked to depression and post-traumatic stress disorder (PTSD) is preceded by stress-related losses of synapses—microscopic connections between brain cells—in the brain's hippocampal ...

Recommended for you

Suicide risk falls substantially after talk therapy

10 hours ago

Repeat suicide attempts and deaths by suicide were roughly 25 percent lower among a group of Danish people who underwent voluntary short-term psychosocial counseling after a suicide attempt, new Johns Hopkins Bloomberg School ...

Brains transform remote threats into anxiety

Nov 21, 2014

Modern life can feel defined by low-level anxiety swirling through society. Continual reports about terrorism and war. A struggle to stay on top of family finances and hold onto jobs. An onslaught of news ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.