DNA detectives track down nerve disorder cause

August 23, 2012

Better diagnosis and treatment of a crippling inherited nerve disorder may be just around the corner thanks to an international team that spanned Asia, Europe and the United States. The team had been hunting DNA strands for the cause of the inherited nerve disorder known as spinocerebellar ataxia, or SCA. The disease causes progressive loss of balance, muscle control and ability to walk. Thanks to their diligence and detective work they have discovered the disease gene in a region of chromosome 1 where another group from the Netherlands had previously shown linkage with a form of SCA called SCA19, and the Taiwanese group on the new paper had shown similar linkage in a family for a form of the disease that was then called SCA22. The international team, from France, Japan, Taiwan and the USA have published their discovery in the Annals of Neurology. The Dutch group has also published results in the same issue of the journal.

Their paper reveals that mutations in the gene KCND3 were found in six families in Asia, Europe and the United States that have been haunted by SCA. Their results will allow for a better understanding of why nerves in the brain's movement-controlling centre die, and how new techniques can find the causes of other diseases that run in families.

Margit Burmeister, Ph.D., a at University of Michigan Health System (U-M), helped lead the work and stressed that the gene could not have been found without a great deal of DNA detective work and the cooperation of the families who volunteered to let researchers map all the DNA of multiple members of their family tree. 'We combined traditional genetic linkage analysis in families with inherited diseases with whole exome sequencing of an individual's DNA, allowing us to narrow down and ultimately identify the mutation,' she says. 'This new type of approach has already resulted in many new gene identifications, and will bring in many more.'

The gene is very important as it manages the production of a protein that allows nerve cells to 'talk' to one another through the flow of potassium. Pinpointing its role as a cause of will now allow more people with ataxia to learn the exact cause of their disease, give a very specific target for new treatments, and perhaps allow the families to stop the disease from affecting future generations.

U-M neurologist Vikram Shakkottai, M.D., Ph.D., an ataxia specialist and co-author on the paper, also notes that the new genetic information will help patients find out the specific cause of their disease. He and his colleagues are already working to find drugs that might alter potassium flow, and provide a treatment for a group of diseases that currently are only treated with supportive care such as physical activity and balance training as patients deteriorate. 'Many of the families who come to our clinic for treatment don't have a recognised genetic mutation, so it's important to find new genetic mutations to explain their symptoms,' says Shakkottai. 'But at the same time, this research is helping us understand a common mechanism of nerve cell dysfunction in progressive and non-progressive disease.'

Their findings however are not restricted to just ataxia. The researchers were also able to show that when KCND3 is mutated, it causes poor communication between nerve cells in the cerebellum as well as the death of those cells. This discovery could aid research on other neurological disorders involving balance and movement.

The Dutch team, that also published its findings about KCND3 at the same time, studied families in the Netherlands and found that mutations on the gene are responsible for SCA19, the cause of which had up until now been a mystery. 'In other words, mutations in this gene are not uncommon and present all over the world,' says Burmeister. 'This means that in the future, this gene should be tested for mutations as part of a clinical genetic test panel for patients with ataxia symptoms. Because a generation can be skipped, it may even be relevant in some sporadic cases—those where the patient isn't aware of any other family members with a similar disease.'

Explore further: New gene mutations linked to amyotrophic lateral sclerosis and nerve cell growth dysfunction

More information: Yi-chung Lee, et al. 'Mutations in KCND3 cause spinocerebellar ataxia type 22', Annals of Neurology, 2012. doi:10.1002/ana.23701

Related Stories

Genetic mutation found in familial chronic diarrhea syndrome

March 21, 2012

When the intestines are not able to properly process our diet, a variety of disorders can develop, with chronic diarrhea as a common symptom. Chronic diarrhea can also be inherited, most commonly through conditions with genetic ...

Recommended for you

How even our brains get 'slacker' as we age

October 24, 2016

New research from Newcastle University, UK, in collaboration with the Federal University of Rio de Janeiro, investigated the way the human brain folds and how this 'cortical folding' changes with age.

How lying takes our brains down a 'slippery slope'

October 24, 2016

Telling small lies desensitises our brains to the associated negative emotions and may encourage us to tell bigger lies in future, reveals new UCL research funded by Wellcome and the Center for Advanced Hindsight.

Robotic tutors for primary school children

October 24, 2016

The use of robotic tutors in primary school classrooms is one step closer according to research recently published in the open access journal Frontiers in Computational Neuroscience.

Mouse decision-making more complex than once thought

October 24, 2016

Working with dot-counting mice running through a virtual-reality maze, scientists from Harvard Medical School have found that in order to navigate space rodent brains rely on a cascade of neural signals that culminate in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.