Studying everyday eye movements could aid in diagnosis of neurological disorders

August 30, 2012

Researchers at the University of Southern California have devised a method for detecting certain neurological disorders through the study of eye movements.

In a study published today in the Journal of Neurology, researchers claim that because (ADHD), (FASD) and Parkinson's Disease (PD) each involve ocular control and attention dysfunctions, they can be easily identified through an evaluation of how patients move their eyes while they watch television.

"Natural attention and eye movement behavior – like a drop of saliva – contains a biometric signature of an individual and her/his state of or dysfunction," the article states. "Such individual signatures, and especially potential biomarkers of particular neurological disorders which they may contain, however, have not yet been successfully decoded."

Typical methods of detection—clinical evaluation, structured behavioral tasks and neuroimaging—are costly, labor-intensive and limited by a patient's ability to understand and comply with instructions. To solve this problem, doctoral student Po-He Tseng and Professor Laurent Itti of the Department of Computer Science at the USC Viterbi School of Engineering, along with collaborators at Queen's University in Canada, have devised a new .

Participants in the study were simply instructed to "watch and enjoy" television clips for 20 minutes while their eye movements were recorded. Eye-tracking data was then combined with normative eye-tracking data and a of to extract 224 quantitative features, allowing the team to use new machine learning techniques to identify critical features that differentiated patients from control subjects.

With eye movement data from 108 subjects, the team was able to identify older adults with Parkinson's Disease with 89.6% accuracy, and children with either ADHD or with 77.3% accuracy.

Providing new insights into which aspects of attention and gaze control are affected by specific disorders, the team's method provides considerable promise as an easily-deployed, low-cost, high-throughput screening tool, especially for young children and elderly populations who may be less compliant to traditional tests.

"For the first time, we can actually decode a person's neurological state from their everyday behavior, without having to subject them to difficult or time-consuming tests," Itti said.

Explore further: Scientists proved that 'blindsight' is used in everyday life scenes

Related Stories

Writing in cursive with your eyes only

July 26, 2012

A new technology described in the paper published online on July 26 in Current Biology might allow people who have almost completely lost the ability to move their arms or legs to communicate freely, by using their eyes to ...

Recommended for you

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...

Going for a run could improve cramming for exams

October 19, 2016

Ever worried that all the information you've crammed in during a study session might not stay in your memory? The answer might be going for a run, according to a new study published in Cognitive Systems Research.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.