Studying everyday eye movements could aid in diagnosis of neurological disorders

Researchers at the University of Southern California have devised a method for detecting certain neurological disorders through the study of eye movements.

In a study published today in the Journal of Neurology, researchers claim that because (ADHD), (FASD) and Parkinson's Disease (PD) each involve ocular control and attention dysfunctions, they can be easily identified through an evaluation of how patients move their eyes while they watch television.

"Natural attention and eye movement behavior – like a drop of saliva – contains a biometric signature of an individual and her/his state of or dysfunction," the article states. "Such individual signatures, and especially potential biomarkers of particular neurological disorders which they may contain, however, have not yet been successfully decoded."

Typical methods of detection—clinical evaluation, structured behavioral tasks and neuroimaging—are costly, labor-intensive and limited by a patient's ability to understand and comply with instructions. To solve this problem, doctoral student Po-He Tseng and Professor Laurent Itti of the Department of Computer Science at the USC Viterbi School of Engineering, along with collaborators at Queen's University in Canada, have devised a new .

Participants in the study were simply instructed to "watch and enjoy" television clips for 20 minutes while their eye movements were recorded. Eye-tracking data was then combined with normative eye-tracking data and a of to extract 224 quantitative features, allowing the team to use new machine learning techniques to identify critical features that differentiated patients from control subjects.

With eye movement data from 108 subjects, the team was able to identify older adults with Parkinson's Disease with 89.6% accuracy, and children with either ADHD or with 77.3% accuracy.

Providing new insights into which aspects of attention and gaze control are affected by specific disorders, the team's method provides considerable promise as an easily-deployed, low-cost, high-throughput screening tool, especially for young children and elderly populations who may be less compliant to traditional tests.

"For the first time, we can actually decode a person's neurological state from their everyday behavior, without having to subject them to difficult or time-consuming tests," Itti said.

Related Stories

Fetal alcohol syndrome testing expands

Mar 19, 2009

Improved technology, partnerships and collaboration across two provinces have allowed Queen's University scientists to dramatically expand the use of eye-movement tests that help identify and assess children ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments