Short-wavelength light increases beneficial stress hormone response in sleep-restricted adolescents

Adolescents can be chronically sleep deprived because of their inability to fall asleep early in combination with fixed wakeup times on school days. According to the Centers for Disease Control (CDC), almost 70 percent of schoolchildren get insufficient sleep—less than eight hours on school nights. This type of restricted sleep schedule has been linked with depression, behavior problems, poor performance at school, drug use, and automobile accidents. A new study from the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute shows that exposure to morning short-wavelength "blue" light has the potential to help sleep-deprived adolescents prepare for the challenges of the day and deal with stress, more so than dim light.

The study was a collaboration between Associate Professor and Director of the LRC Light and Health Program Mariana Figueiro and LRC Director and Professor Mark S. Rea. Results of the study, titled "Short-Wavelength Light Enhances Cortisol Awakening Response in Sleep-Restricted Adolescents," were recently published in the open access International Journal of Endocrinology.

Levels of cortisol, a hormone produced by the , follow a daily 24-hour rhythm. Cortisol concentrations are low throughout the day, reaching a broad minimum in the evening before rising slowly again throughout the night. In addition to this gradual elevation of cortisol at night, rise sharply within the first 30 to 60 minutes after waking. This is known as the cortisol awakening response (CAR). In , the cortisol spike occurs at night, at the start of activity. It appears to be associated with the time of transition from rest to activity, upon waking. A high CAR has been associated with better preparedness for stressful and challenging activities.

"The present results are the first to show that low levels of short-wavelength light enhance CAR in adolescents who were restricted from sleep," said Figueiro. "Morning light exposure may help to wake up the body when it is time to be active, thus preparing individuals for any environmental stress they might experience."

Short-wavelength light has been shown to maximally suppress production of nocturnal melatonin and phase shift the timing of the biological clock. The effect of short-wavelength light on other biomarkers has not been widely studied.

The study included three overnight sessions, at least one week apart. All participants wore a Dimesimeter on a wrist band to measure light exposure and to verify the regularity of their activity/rest periods during the three-week study. The Dimesimeter is a small calibrated light meter device developed by the LRC that continuously records circadian light and activity levels. During the study, adolescents aged 12 to 17 years went to sleep at 1:30 a.m. and woke up at 6:00 a.m., a 4.5-hour sleep opportunity. Each week, participants either experienced morning short-wavelength blue light (40 lux of 470-nanometer light) or remained in dim light.

"We found that exposure to short-wavelength blue light in the morning significantly enhances CAR in sleep-deprived adolescents, more so than dim light," said Rea. "Morning exposure to blue light may be a simple, yet practical way to better prepare adolescents for the challenges of the day."

How can teenagers get morning exposure to blue light? According to Figueiro and Rea, light exposure needs to occur within one hour of waking to have an impact on CAR. Blue light is available in daylight, but in winter, it is often dark when teens are waking up for school, due to later sunrise. More consistent options include blue light goggles and light boxes. Backlit tablets and computer screens provide , but further research is needed to accurately measure how much light is produced by each product. Compared with light goggles or a light box, backlit tablets and computer screens provide a weaker , and therefore would need to be used for a longer period of time to get the same effect.  

More information: www.hindawi.com/journals/ije/2012/301935/

add to favorites email to friend print save as pdf

Related Stories

LRC’s 'Dimesimeter' named Top 10 Innovation

Mar 29, 2012

The Scientist magazine unveiled the Top 10 Innovations of 2011, and coming in at number eight was the Dimesimeter, a circadian light and activity sensor developed by the Lighting Research Center (LRC) at Ren ...

Recommended for you

Study reveals state of crisis in Canadian foster care system

2 hours ago

A new study of foster care in Canada led by a researcher at Western University reveals a shrinking number of foster care providers are available across the country to care for a growing number of children with increasingly ...

Researchers prove the benefits of persimmons for diet

4 hours ago

Alba Mir and Ana Domingo, researchers from the Department of Analytical Chemistry of the University of Valencia, under the supervision of professors Miguel de la Guardia and Maria Luisa Cervera, from the same department, ...

User comments