Metals versus microbes: The biocidal effect of metalloacid-coated surfaces

November 13, 2012

A new study published in BioMed Central's open access journal Antimicrobial Resistance and Infection Control reports of a phenomenon that could help control the spread of hospital-acquired infections: a surface-coating of metalloacids kills off microbial strains, even in multidrug-resistant microorganisms.

Hospital infections are a major public health concern, causing an estimated 99,000 deaths a year in the USA alone. Cleaning and disinfecting surfaces greatly helps reduce these infections. In addition, previous studies have indicated that metalloacids could limit the ability of microorganisms to survive by producing oxonium ions (H3O+), which creates an acidic pH.

In this novel study, the authors from the Centre Hospitalier Universitaire de Tours and the Centre Hospitalier Universitaire de Besançon, France, set out to test the biocidal ability of molybdenum trioxide metalloacid-coated surfaces. To do this, they contaminated metalloacid-coated and non-coated surfaces by exposing them to microbial suspensions of eleven different microorganisms responsible for .

The microorganisms tested were two strains, Clostridium difficile, three extended-spectrum beta-lactamase-producing Enterobacteriaceae strains, vancomycin-resistant vanA Enterococcus faecium, Psuedomonas aeruginosa, multidrug-resistant Acinetobacter baumanii, and two fungal strains of and Aspergillus fumigatus.

The authors found that the metalloacid-coated surfaces exhibited significant in all non-spore-forming organisms tested within 2-6 hours of initial contact. The coated surfaces greatly limited the survival of microorganisms, whereas microorganism numbers remained substantial on non-coated surfaces. Interestingly, spore-forming organisms were completely unaffected by the coated surfaces.

The biocidal reaction is thought to be caused by the diffusion H3O+ ions through membranes, resulting in altered enzyme transport systems and inhibited metabolic activity.

Lead author Nathalie van der Mee-Marquet thinks that the findings of this study could greatly aid hospitals in controlling infection. She said, "In contrast to disinfectants and antibiotics, microbial resistance to metalloacids may not emerge, and they should be safe for human use. A molybdenum trioxide coating may be an effective and permanent means of minimizing microbial contamination between hospital cleaning procedures, particularly against multidrug-resistant organisms."

van der Mee-Marquet suggests that further studies should evaluate the benefits of the coating on medical devices and gauge whether it can be used as a complementary measure in hospitals for preventing the spread of nosocomial infections.

More information: Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms. Nathalie Tetault, Houssein Gbaguidi-Haore, Xavier Bertrand, Roland Quentin and Nathalie Van Der Mee-Marquet, Antimicrobial Resistance and Infection Control (in press)

Related Stories

Copper reduces infection risk by more than 40 percent

July 1, 2011

Professor Bill Keevil, Head of the Microbiology Group and Director of the Environmental Healthcare Unit at the University of Southampton, has presented research into the mechanism by which copper exerts its antimicrobial ...

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.