Researchers find new genetic pathway behind neurodevelopmental disorders

December 6, 2012

Researchers at the Douglas Mental Health University Institute, have discovered a new genetic process that could one day provide a novel target for the treatment of neurodevelopmental disorders, such as intellectual disability and autism.

The research study, which appears in the December issue of the , was led by Carl Ernst, a Douglas Institute researcher, an assistant professor in McGill's Department of Psychiatry and a Canada Research Chair in Psychiatric Genetics. Ernst and his colleagues found that genetic mutations that negatively affect brain development can occur in a gene family of previously unknown function in the human genome.

According to the , affect one in six children in industrialized countries. Impairing the growth and development of the brain or central nervous system, neurodevelopmental disorders encompass a broad range of conditions, including developmental delay, and cerebral palsy. People with neurodevelopmental disorders can experience difficulties with language, speech, learning, behaviour, motor skills and memory.

Mutations in genes are thought to underlie many neurodevelopmental disorders, but all genes important for brain development found to date are in a single pathway. Genes are coded in DNA that gives way to RNA, which gives way to protein. Proteins form the functional unit of the body and are the major players in all biological activity. Prior to the current study, all important for neurodevelopmental disorders, occured in genes that make protein.

The work of Ernst and his research team identified an important shortcut in the process of making for brain development. By sequencing the genomes of 200 people with neurodevelopmental disorders and chromosomal abnormalities, and comparing the results to more than 15,000 control samples, the researchers made a surprising discovery: some individuals had mutations in a gene that did not make protein.

"Our discovery tells us that mutations in genes that code only for RNA and do not make protein can have a functional impact and lead to neurodevelopmental abnormalities," Ernst says. "In previous studies of brain development, RNA was just considered a middle player – one that only served as a template for the production of proteins."

By opening up a new area of study involving RNA, Ernst aims to advance understanding of the underlying causes of neurodevelopmental disorders. "We hope to shine a new light on how the brain develops," he says.

Explore further: Researchers find alterations of a single gene associated with intellectual disability, epilepsy and autistic features

Related Stories

Recommended for you

Scientists edit gene mutations in inherited form of anemia

October 26, 2016

A Yale-led research team used a new gene editing strategy to correct mutations that cause thalassemia, a form of anemia. Their gene editing technique provided corrections to the mutations and alleviated the disease in mice, ...

Maternal blood test may predict birth complications

October 24, 2016

A protein found in the blood of pregnant women could be used to develop tests to determine the health of their babies and aid decisions on early elective deliveries, according to an early study led by Queen Mary University ...

Scientists find new genetic roots of schizophrenia

October 19, 2016

UCLA scientists have made a major advance in understanding the biology of schizophrenia. Using a recently developed technology for analyzing DNA, the scientists found dozens of genes and two major biological pathways that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.