Host cholesterol secretion likely to influence gut microbiota

December 18, 2012

For more than half a century, researchers have known that the bacteria that colonize the gastrointestinal tract of mammals influence their host's cholesterol metabolism. Now, Jens Walter and colleagues of the University of Nebraska show that changes in cholesterol metabolism induced by diet can alter the gut flora. The research was published online ahead of print in the journal Applied and Environmental Microbiology.

In the study, the researchers added plant sterol esters to the diets of hamsters. The overall effect of this was to inhibit several bacterial taxa, from the families Coriobacteriacea and Erysipelotrichaceae, says Walter. But the immediate effect of the plant sterols was to physically block cholesterol absorption by the intestine. That decreased in the liver and the plasma, prompting the hamster's body to respond by synthesizing more cholesterol. That, in turn, boosted cholesterol excretion into the gut, and that extra cholesterol was the direct inhibitor of those bacterial families.

"The abundance of these bacterial taxa and the levels of cholesterol in the fecal samples followed a mathematical model of bacterial inhibition," says Walter.

Practically speaking, the microbial inhabitants of the gut are part of the . Researchers have shown that certain health problems are related to changes in the , such as can be induced by . Since changes in diet can influence composition of the gut flora, health problems such as obesity might be targeted by dietary interventions designed to suppress bacteria that contribute to weight gain. "However, for these to be successful, we need to know which bacterial patterns not only are associated with disease, but actually contribute to it," says Walter, noting that his research showed that some alterations associated with metabolic disease might be the consequence, rather than the cause of the disorder.

Walter says that the work was a real student project. Among the coauthors, three were graduate students, and two were undergraduates. "As a supervisor, it is extremely nice to see young scientists work as a team, and staying dedicated through the five years that this project took to complete," he says.

Explore further: 'Healthy' sterols may pose health risk

More information: A copy of the manuscript can be found online at bit.ly/asmtip1212b. Formal publication is scheduled for the January 2013 issue of Applied and Environmental Microbiology.

I. Martinez, D.J. Perdicaro, A.W. Brown, S. Hammons, T.J. Carden, T.P. Carr, K.M. Eskridge, and J. Walter, 2012. Diet-induced alterations of host cholesterol metabolism are likely to affect gut microbiota composition in hamsters. Appl. Environ. Microbiol. 2012 Nov 2. [Epub ahead of print]

Related Stories

'Healthy' sterols may pose health risk

July 14, 2008

Plant sterols have been touted as an effective way to lower cholesterol and reduce the risk of heart disease. However, a research study in the July JLR has uncovered that these compounds do have their own risks, as they can ...

Gut flora affects maturation of B cells in infants

May 7, 2012

Infants whose gut is colonised by E. coli bacteria early in life have a higher number of memory B cells in their blood, reveals a study of infants carried out at the Sahlgrenska Academy at the University of Gothenburg, Sweden.

Kittens: Their microbiomes are what they eat

October 22, 2012

For animals as well as people, diet affects what grows in the gut. The gut microbial colonies, also known as the gut microbiome, begin to form at birth. Their composition affects how the immune system develops and is linked ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.