15 years of brain research: Multisensory speech perception examined

December 20, 2012 by Bettye Miller

Research on multisensory speech perception in recent years has helped revolutionize our understanding of how the brain organizes the information it receives from our many different senses, UC Riverside psychology professor Lawrence D. Rosenblum writes in the January 2013 issue of Scientific American.

" and have largely abandoned early ideas of the brain as a , in which many distinct regions are dedicated to different senses," he says. "Instead scientists now think that the brain has evolved to encourage as much cross talk as possible between the senses—that the brain's sensory regions are physically intertwined."

The article, "A Confederacy of Senses," explains how research in the past 15 years has demonstrated that no sense works alone. An abstract of the article can be read here.

"The multisensory revolution is also suggesting new ways to improve devices for the blind and deaf, such as cochlear implants," Rosenblum writes. This research also has improved speech-recognition software, he says.

Researchers have discovered that the brain "does not channel visual information from the eyes into one neural container and auditory information from the ears into another, discrete, container as though it were sorting coins," Rosenblum writes. "Rather our brains derive meaning from the world in as many ways as possible by blending the diverse forms of sensory perception."

Rosenblum is the author of "See What I'm Saying: The Extraordinary Powers of Our Five Senses" (Norton, 2010), and has spent two decades studying multisensory perception, lipreading and hearing. His research has been supported by the National Science Foundation and the National Institutes of Health. He is known internationally for his research on risks the inaudibility of hybrid cars pose for blind and other pedestrians.

Explore further: For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function

Related Stories

Recommended for you

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, ...

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.