Glial cells assist in the repair of injured nerves

This is an electron microscope image of a cross-section through a mouse nerve: following injury, the myelin sheath of numerous regenerated nerve fibers is too thin. Credit: MPI of Experimental Medicine

When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Unlike the brain and spinal cord, the peripheral nervous system has an astonishing capacity for regeneration following injury. Researchers at the Max Planck Institute of Experimental Medicine in Göttingen have discovered that, following nerve damage, peripheral produce the growth factor neuregulin1, which makes an important contribution to the regeneration of damaged nerves.

From their cell bodies to their terminals in muscle or skin, neuronal extensions or axons in the are surrounded along their entire length by glial cells. These cells, which are known as , envelop the axons with an insulating sheath called myelin, which enables the rapid transmission of . Following injury to a , the damaged axons degenerate. After a few weeks, however, they regenerate and are then recovered with myelin by the Schwann cells. For thus far unexplained reasons, however, the Schwann cells do not manage to regenerate the completely. Thus the function of damaged nerves often remains permanently impaired and certain muscles remain paralysed in affected patients.

In a current research study, the scientists have succeeded in showing that the growth factor neuregulin1 supports and the redevelopment of the myelin layer. This protein is usually produced by neurons and is localised on axons where it acts as an important signal for the maturation of Schwann cells and myelin formation. Because the axons rapidly degenerate after injury, the remaining Schwann cells lose their contact with the axons. They thus lack the neuregulin1 signal of the nervous fibres. "In the phase following nerve damage, in which the axons are missing, the Schwann cells must carry out many tasks without the help of axonal signals. If the Schwann cells cannot overcome this first major obstacle in the aftermath of nerve injury, the nerve cannot be adequately repaired," explains Ruth Stassart, one of the study authors.

To prevent this, the Schwann cells themselves take over the production of the actual neuronal signal molecule. After nerve damage, they synthesise the neuregulin1 protein until the axons have grown again. With the help of genetically modified mice, the researchers working on this study were able to show that the neuregulin1 produced in Schwann cells is necessary for the new maturation of the Schwann cells and the regeneration of the myelin sheath after injury. "In mice that lack the neuregulin1 gene in their Schwann cells, the already incomplete nerve regeneration process is extensively impaired," explains co-author Robert Fledrich.

The researchers would now like to examine in greater detail how the Schwann cells contribute to the complete repair of myelinated axons after nerve damage, so that this information can also be used for therapeutic purposes.

More information: Ruth M Stassart, Robert Fledrich, Viktorija Velanac, Bastian G Brinkmann, Markus H Schwab, Dies Meijer, Michael W Sereda & Klaus-Armin Nave, A role for Schwann cell–derived neuregulin-1 in remyelination, Nature Neuroscience, 2013 Jan; 16(1):48-54. doi: 10.1038/nn.3281

Related Stories

Turning back the clock for Schwann cells

May 19, 2008

Myelin-making Schwann cells have an ability every aging Hollywood star would envy: they can become young again. According to a study appearing in the May 19 issue of the Journal of Cell Biology, David B. Parkinson (Unive ...

Scientists find gene vital to nerve cell development

Jun 09, 2011

(Medical Xpress) -- The body’s ability to perform simple tasks like flex muscles or feel heat, cold and pain depends, in large part, on myelin, an insulating layer of fats and proteins that speeds the ...

How injured nerves grow themselves back

Sep 27, 2010

Unlike nerves of the spinal cord, the peripheral nerves that connect our limbs and organs to the central nervous system have an astonishing ability to regenerate themselves after injury. Now, a new report in the October 1st ...

Recommended for you

Study links enzyme to autistic behaviors

23 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

Jul 23, 2014

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

User comments