Genes that control nervous system development play a role in gum disease

(Medical Xpress)—By simultaneously investigating millions of gene variants in more than 5,000 individuals, researchers at the University of North Carolina at Chapel Hill reveal that genes that are responsible for nervous system development and immune function also play a role in an insidious gum disease known as chronic periodontitis.

The work, led by Kimon Divaris, a research assistant professor at UNC School of Dentistry, is the first genome-wide association study of the disease, offering an unparalleled breadth of insight into its genetics and how it is affected by environmental factors such as smoking.

"Periodontitis is a serious infection and inflammation of the gums that can progressively destroy the bone and tissues that support your teeth," said Divaris, whose work appears in the March 4 issue of . "Now we not only confirm that this is a heritable disease, which occurs in some form in nearly 50 percent of the population, but we also know which play a large role – and that gives us pretty interesting clues about how the disease works and what we can do to better treat and prevent it."

Divaris and his team, including senior author Stephen Offenbacher, chair of the department of periodontology, identified six genes and 12 pathways important to nervous system and that are involved in the disease. Variants of those genes could potentially increase or decrease people's risk of developing periodontitis, depending on how these genes interact with one another and their environment.

Based on their findings, Divaris and his team propose that genes in the immune system and the nervous system play off of one another to predispose people to chronic periodontitis, and that smoking interacts with these genes to increase that risk. One hypothesis is that when bacteria that live on and beneath our gums become harmful, the sends signals to elicit an to scale back the infection. That response leads to inflammation and possible destruction of the tooth-supporting gums and tissues.

"It has long been known that it isn't the bacteria, but our defense against the bacteria – the inflammation – that causes periodontal destruction and tooth loss," said Divaris. "But now we have a plausible network of genes – a circuit – that can, in part, explain how that inflammation comes to be."

Related Stories

Study hints at why gums suffer with age

Apr 17, 2012

(Medical Xpress) -- New research from Queen Mary, University of London in collaboration with research groups in the USA sheds light on why gum disease can become more common with old age.

Recommended for you

Throwing a loop to silence gene expression

13 hours ago

All human cells contain essentially the same DNA sequence – their genetic information. How is it possible that shapes and functions of cells in the different parts of the body are so different? While every cell's DNA contains ...

A nucleotide change could initiate fragile X syndrome

Sep 01, 2014

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

User comments