Gene controls three different diseases

April 25, 2013

An international research consortium led by the Universitat Autònoma de Barcelona (UAB), the CIBERER and the University of Wurzburg (Germany) has discovered a gene that can cause three totally different diseases, depending on how it is altered.

The researchers, using next-generation massive ultrasequencing techniques, have sequenced the over 20,000 genes of a Fanconi anaemia patient's genome. By adopting this strategy they have succeeded in identifying responsible for this disease in the ERCC4 gene, which had already been linked to two other : xeroderma pigmentosum and a type of progeria. The latter are characterised by heightened sensitivity to sunlight, susceptibility to skin cancer and, in the case of progeria, premature aging. Fanconi anaemia, on the other hand, is characterised by progressive anaemia, and a high risk of developing leukaemia and mouth tumours. The ERCC4 gene can therefore be responsible for three different diseases.

The researchers have shown that this gene is involved in two by which cells maintain the stability of the genome, in such a way that the balance between these two repair systems will determine which of the three diseases the patient will contract. "This is a rather exceptional case, since there are few precedents of a single gene being involved in two independent and causing three clinically different diseases", points out UAB professor Dr Jordi Surrallés.

These findings, published today in the American Journal of Human Genetics, as well as improving the diagnosis and genetic characterisation of rare diseases, will allow new therapeutic strategies to be applied, like gene therapy or the selection of healthy, compatible embryos to cure siblings through umbilical cord transplants. The findings add to our knowledge of the two DNA repair mechanisms, which are so important for maintaining the stability of our genes and preventing cancer in the general population. In fact, the researchers point to the importance of going on to study this gene's possible role in breast cancer and ovarian cancer.

Explore further: Rare genetic disease offers insight into common cancers

Related Stories

Rare genetic disease offers insight into common cancers

September 4, 2012

Fanconi anemia is a recessive genetic disorder affecting 1 in 350,000 babies, which leaves cells unable to repair damaged DNA. This lack of repair puts Fanconi anemia patients at high risk for developing a variety of cancers, ...

Recommended for you

Multifaceted genetic impact of training

September 23, 2016

Endurance training changes the activity of thousands of genes and give rise to a multitude of altered DNA-copies, RNA, researchers from Karolinska Institutet report. The study, which also nuances the concept of muscle memory, ...

Controlling cell-fate decisions

September 23, 2016

Rafal Ciosk and his group at the FMI have identified an important link between the Notch signaling pathway and PRC2-mediated gene silencing. They showed that a fine balance between epigenetic silencing and signaling is crucial ...

Unravelling the genetic mystery behind mitochondrial disease

September 15, 2016

Researchers from the Monash Biomedicine Discovery Institute in Melbourne have identified two new genes linked to a major cause of mitochondrial disease. Their research opens the way for better genetic diagnosis of the disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.