Scientists create way to see structures that store memories in living brain

This is a living neuron in culture. Green dots indicate excitatory synapses and red dots indicate inhibitory synapses. Credit: Don Arnold

Oscar Wilde called memory "the diary that we all carry about with us." Now a team of scientists has developed a way to see where and how that diary is written.

The team, led by Don Arnold and Richard Roberts of USC, engineered that light up synapses in a living neuron in real time by attaching fluorescent markers onto – all without affecting the neuron's ability to function.

The fluorescent markers allow scientists to see live excitatory and for the first time – and, importantly, how they change as are formed.

The synapses appear as bright spots along dendrites (the branches of a neuron that transmit ). As the brain processes new information, those bright spots change, visually indicating how synaptic structures in the brain have been altered by the new data.

"When you make a memory or learn something, there's a physical change in the brain. It turns out that the thing that gets changed is the distribution of ," said Arnold, associate professor of molecular and at the USC Dornsife College of Letters, Arts and Sciences, and co-corresponding author of an article about the research that will appear in Neuron on June 19.

The probes behave like antibodies, but bind more tightly, and are optimized to work inside the cell – something that ordinary antibodies can't do. To make these probes, the team used a technique known as "mRNA display," which was developed by Roberts and Jack Szostak.

"Using mRNA display, we can search through more than a trillion different potential proteins simultaneously to find the one protein that binds the target the best," said Roberts, co-corresponding author of the article and a professor of chemistry and chemical engineering with joint appointments at USC Dornsife and the USC Viterbi School of Engineering.

Arnold and Roberts' probes (called "FingRs") are attached to GFP (green fluorescent protein), a protein isolated from jellyfish that fluoresces bright green when exposed to blue light. Because FingRs are proteins, the genes encoding them can be put into brain cells in living animals, causing the cells themselves to manufacture the probes.

The design of FingRs also includes a regulation system that cuts off the amount of FingR-GFP that is generated after 100 percent of the target protein is labeled, effectively eliminating background fluorescence – generating a sharper, clearer picture.

These probes can be put in the brains of living mice and then imaged through cranial windows using two-photon microscopy.

The new research could offer crucial insight for scientists responding to President Obama's Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative, which was announced in April.

Modeled after the Human Genome Project, the objective of the $100 million initiative is to fast-track research that maps out exactly how the brain works and "better understand how we think, learn, and remember," according to the BRAIN Initiative website.

Related Stories

Video shows the traffic inside a brain cell

Aug 22, 2012

Using bioluminescent proteins from a jellyfish, a team of scientists has lit up the inside of a neuron, capturing spectacular video footage that shows the movement of proteins throughout the cell.

Scientists discover the origin of a giant synapse

May 26, 2013

Humans and most mammals can determine the spatial origin of sounds with remarkable acuity. We use this ability all the time—crossing the street; locating an invisible ringing cell phone in a cluttered bedroom. ...

Recommended for you

New research supporting stroke rehabilitation

13 hours ago

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

Team finds an off switch for pain

18 hours ago

In research published in the medical journal Brain, Saint Louis University researcher Daniela Salvemini, Ph.D. and colleagues within SLU, the National Institutes of Health (NIH) and other academic institutions have d ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

lenore_lafiore
not rated yet Jun 20, 2013
""When you make a memory or learn something, there's a physical change in the brain. It turns out that the thing that gets changed is the distribution of synaptic connections," said Arnold, associate professor of molecular and computational biology "

Right as you read this you are making a memory of learning how you yourself make memories.
beleg
not rated yet Jun 20, 2013
This 'how' was not taught. Teachers beware.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.