Striking the right balance with muscle control

February 28, 2014
Figure 1: The human body maintains balance thanks to well-coordinated muscles controlled by the central nervous system. Credit: sognolucido/iStock/Thinkstock

The central nervous system (CNS) comprises the brain and spinal cord, and coordinates all our bodily activities. One of the functions of the CNS is to choose the most efficient muscle movements in order to conserve energy and allow the body to move smoothly, and it is believed that the CNS trains itself through experience to narrow down the number of options. Fady Alnajjar and colleagues from the Intelligent Behavior Control Unit of the RIKEN Brain Science Institute have now modeled the behavior of muscles during balance tests to illustrate how the human CNS trains itself to maintain balance1.

"Modeling of the computational mechanisms between the CNS and , which we call muscle synergy, is challenging," explains Alnajjar. "Our study concerns the muscle synergy behind basic motor skills, such as maintaining balance, in healthy humans."

Alnajjar's team developed a model of 'muscle synergy' by devising two novel parameters: the synergy stability index (SSI), which measures the similarities between muscle usage in repeated behaviors and therefore the stability of the neural command, and the synergy coordination index, which measures the overall size of the synergy space required to carry out a movement and therefore the level of coordination between muscles.

The researchers used these two parameters to measure the interactions between the human CNS and muscles during balance tests. Eight participants were asked to stand on a randomly moving platform, using only their hips and ankles to maintain balance, with electrodes attached to their major leg and .

Both indices were found to successfully characterize the muscle synergy associated with balance skill. "Participants with strong balancing ability showed high SSI levels," notes Alnajjar, "implying that their CNSs were aware of the best muscle synergy for responding to balance disturbances. Participants with low balancing ability had low SSI levels. Also, good balancers used tightly coordinated muscles, resulting in smoother movements."

In each case, the CNS appeared to search for a narrow muscle-synergy space of stable neural commands and coordinated muscle reactions. In a second set of experiments using the lowest scorers from round one, each person completed five more sessions on the platform. The participants showed significant improvement on completion, suggesting that with training, the CNS can narrow its muscle-synergy space and thus improve coordination.

Alnajjar hopes that an advanced version of these indices could be used to develop therapies for post-stroke motor function recovery as a means of creating targeted, effective neuro-rehabilitation systems.

More information: Alnajjar, F., Wojtara, T., Kimura, H. & Shimoda, S. "Muscle synergy space: Learning model to create an optimal muscle synergy." Frontiers in Computational Neuroscience 7, 136 (2013). DOI: 10.3389/fncom.2013.00136

Related Stories

Protein illustrates muscle damage

November 11, 2013

Researchers at McMaster University have discovered a protein that is only detectable after muscle damage, and it may serve as a way to measure injury.

How neurons control fine motor behavior of the arm

January 31, 2014

Motor commands issued by the brain to activate arm muscles take two different routes. As the research group led by Professor Silvia Arber at the Basel University Biozentrum and the Friedrich Miescher Institute for Biomedical ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.