Design prototype chip makes possible a fully implantable cochlear implant

Researchers from Massachusetts Eye and Ear, Harvard Medical School, and Massachusetts Institute of Technology (MIT) have designed a prototype system-on-chip (SoC) that could make possible a fully implanted cochlear implant. They will present their findings on Feb. 11at the IEEE International Solid State Circuits Conference in San Francisco.

A cochlear implant is a device that electronically stimulates the to restore hearing in people with . Conventional are made up of an external unit with a microphone and sound processer to pick up and encode sound, and an internal unit that is seated in the skull and connected to an electrode array inserted into the cochlea. The external unit raises concerns in some individuals with social stigma and has limited use in the shower or during water sports.

"In addition to the cosmetic aspect of an invisible cochlear implant, a potential major functional benefit is that it can facilitate sound localization. Our system relies on a sound sensor located in the middle ear so that the user can benefit from directional cues provided by the auricle and ear canal. Conventional cochlear implants detect sound by a microphone located outside of the ear so that important directional cues are lost," said Konstantina Stankovic, M.D., Ph.D., Mass. Eye and Ear otologist who co-led the study with Anantha Chandrakasan, Ph.D., MIT head of Electrical Engineering and Computer Science. "Our long-term goal is to develop a fully implantable cochlear implant. To facilitate that development, we have developed the SoC and tested it in ears of human cadavers."

In addition, the SoC was designed to require lower power sound processing and auditory nerve stimulation to enable operation from an implantable battery that is wirelessly recharged once daily.

This project was a collaboration between the following researchers at MIT, Harvard Medical School and Mass. Eye and Ear: Marcus Yip, Rui Yin, Hideko Heidi Nakajima, Konstantina Stankovic and Anantha Chadrakasan.

More information: phys.org/news/2014-02-cochlear… terior-hardware.html

Related Stories

Cochlear implants—with no exterior hardware

date Feb 09, 2014

Cochlear implants—medical devices that electrically stimulate the auditory nerve—have granted at least limited hearing to hundreds of thousands of people worldwide who otherwise would be totally deaf. ...

New strategy lets cochlear implant users hear music

date Oct 09, 2013

For many, music is a universal language that unites people when words cannot. But for those who use cochlear implants—technology that allows deaf and hard of hearing people to comprehend speech—hearing ...

Two bionic ears are better than the sum of their parts

date Sep 20, 2012

Cochlear implants—electronic devices surgically implanted in the ear to help provide a sense of sound—have been successfully used since the late 1980's. But questions remain as to whether bilateral cochlear ...

Recommended for you

Researchers reveal a genetic blueprint for cartilage

date Jul 02, 2015

Cartilage does a lot more than determine the shapes of people's ears and noses. It also enables people to breathe and to form healthy bones—two processes essential to life. In a study published in Cell Re ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.