Researchers develop a novel antibacterial orthodontic bracket cement

Today, at the 43rd Annual Meeting & Exhibition of the American Association for Dental Research (AADR), held in conjunction with the 38th Annual Meeting of the Canadian Association for Dental Research, Mary Anne Sampaio de Melo, from the University of Maryland, Baltimore, will present a research study titled "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate."

Demineralized lesions in around orthodontic brackets are caused by acids from biofilm accumulation. The objectives of this study were to develop a novel antibacterial orthodontic bracket cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM), and to investigate the effects on microcosm biofilm response and enamel bond strength.

DMADDM with an alkyl chain length of 12 was synthesized and incorporated into the cement at mass fractions of 0%, 1.5% and 3%. Orthodontic cement Transbond XT served as control. Shear bond strength of metal brackets to human enamel was measured. Cement remnant index scores were determined after bracket failure. A plaque microcosm biofilm model with human saliva as inoculum was used to measure metabolic activity, production, and colony-forming units (CFU) for biofilms on orthodontic cements.

Incorporating DMADDM into orthodontic cement did not affect the shear bond strength (13.1 to 14.6 MPa; p = 0.09). Dental plaque microcosm biofilm viability was substantially inhibited when in contact with cement disks containing DMADDM. The new orthodontic adhesive reduced biofilm metabolic activity by up to 66% and lactic acid by 78% (p < 0.05). Biofilm total micro-organisms were reduced by up to 88%, total streptococci by 96%, and mutans streptococci by 98% (p < 0.05).

Increasing DMADDM mass fraction increased the antibacterial potency. Orthodontic cement containing 3% DMADDM was the most strongly antibacterial. These results show that the DMADDM-containing orthodontic cement inhibited biofilms and lactic acid without compromising the enamel bond strength, and hence may be promising to reduce or eliminate demineralization in enamel around orthodontic brackets.

More information: This is a summary of abstract #1327, "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate," to be presented by Mary Anne Sampaio de Melo, Saturday, March 22, 2014, from 8 a.m. – 9:30 a.m. at the Charlotte Convention Center, room 213BC.

Provided by International & American Associations for Dental Research

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Poorest in society have eight fewer teeth

Nov 18, 2014

The poorest people in society have eight fewer teeth by their seventies than the richest, one of the biggest studies of its type ever undertaken has revealed.

Salivary mucins play active role to fight cavities

Nov 11, 2014

Salivary mucins, key components of mucus, actively protect the teeth from the cariogenic bacterium, Streptococcus mutans, according to research published ahead of print in Applied and Environmental Microbiol ...

Preventing needless dental emergencies

Nov 10, 2014

The number of patients hospitalized for dental infections that could have been prevented with regular care or in-office root canals rose nearly 42 percent from 2000 to 2008, according to a first-of-its-kind ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.