Researchers develop a novel antibacterial orthodontic bracket cement

March 21, 2014

Today, at the 43rd Annual Meeting & Exhibition of the American Association for Dental Research (AADR), held in conjunction with the 38th Annual Meeting of the Canadian Association for Dental Research, Mary Anne Sampaio de Melo, from the University of Maryland, Baltimore, will present a research study titled "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate."

Demineralized lesions in around orthodontic brackets are caused by acids from biofilm accumulation. The objectives of this study were to develop a novel antibacterial orthodontic bracket cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM), and to investigate the effects on microcosm biofilm response and enamel bond strength.

DMADDM with an alkyl chain length of 12 was synthesized and incorporated into the cement at mass fractions of 0%, 1.5% and 3%. Orthodontic cement Transbond XT served as control. Shear bond strength of metal brackets to human enamel was measured. Cement remnant index scores were determined after bracket failure. A plaque microcosm biofilm model with human saliva as inoculum was used to measure metabolic activity, production, and colony-forming units (CFU) for biofilms on orthodontic cements.

Incorporating DMADDM into orthodontic cement did not affect the shear bond strength (13.1 to 14.6 MPa; p = 0.09). Dental plaque microcosm biofilm viability was substantially inhibited when in contact with cement disks containing DMADDM. The new orthodontic adhesive reduced biofilm metabolic activity by up to 66% and lactic acid by 78% (p < 0.05). Biofilm total micro-organisms were reduced by up to 88%, total streptococci by 96%, and mutans streptococci by 98% (p < 0.05).

Increasing DMADDM mass fraction increased the antibacterial potency. Orthodontic cement containing 3% DMADDM was the most strongly antibacterial. These results show that the DMADDM-containing orthodontic cement inhibited biofilms and lactic acid without compromising the enamel bond strength, and hence may be promising to reduce or eliminate demineralization in enamel around orthodontic brackets.

Explore further: Sipping a soft drink is much more harmful for your teeth than gulping it

More information: This is a summary of abstract #1327, "Antibacterial Orthodontic Cement Containing a Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate," to be presented by Mary Anne Sampaio de Melo, Saturday, March 22, 2014, from 8 a.m. – 9:30 a.m. at the Charlotte Convention Center, room 213BC.

Related Stories

Recommended for you

How to eliminate pain tied to tooth decay

November 17, 2015

Dual discoveries at USC propose a promising method to regrow nonliving hard tissue, lessening or even eliminating pain associated with tooth decay, which the National Institutes of Health calls the most prevalent chronic ...

Earliest evidence of dental cavity manipulation found

July 20, 2015

A large team of researchers with members from institutions in Italy, Germany and Australia has found what they claim is the earliest example of dental cavity manipulation. In their paper published in the journal Scientific ...

Researchers use light to coax stem cells to regrow teeth

May 28, 2014

A Harvard-led team is the first to demonstrate the ability to use low-power light to trigger stem cells inside the body to regenerate tissue, an advance they reported in Science Translational Medicine. The research, led by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.