Research team identifies new genetic syndrome

Researchers at the National Institutes of Health (NIH) have identified a new genetic syndrome characterized by a constellation of health problems, including severe allergy, immune deficiency, autoimmunity and motor and neurocognitive impairment. The researchers, led by scientists at the NIH's National Institute of Allergy and Infectious Diseases (NIAID), observed that the syndrome's diverse symptoms are the result of mutations in a single gene associated with sugar metabolism. They plan to evaluate certain types of sugars as a potential treatment for people with this rare genetic condition in an upcoming clinical trial.

The study, published in the Journal of Allergy and Clinical Immunology, involved eight patients from two families. The families were originally referred to NIH because of severe eczema and recurrent skin and lung infections. By studying this group, the investigators found that the syndrome is caused by mutations in the PGM3 gene that result in the production of underactive PGM3 protein. The NIH team showed that underactive PGM3 leads to lower levels of sugars that are essential for glycosylation, or the attachment of sugars to proteins. Glycosylation is necessary for the normal growth and function of all tissues and organs in the human body. The variety of symptoms in people with PGM3 mutations likely reflects the production of abnormally glycosylated proteins throughout the body. In the laboratory, adding a certain type of sugar to cells from patients with PGM3 mutations boosted cellular levels of the sugars necessary for glycosylation, thus suggesting a potential treatment.

The NIH scientists have yet to unravel how glycosylation defects influence the immune systems of people with PGM3 mutations. However, their findings suggest that other, less severe defects in glycosylation may play a role in more common allergic and immunologic diseases, opening potential new avenues for developing treatments. The study was conducted by scientists from NIAID, the National Human Genome Research Institute and the National Institute of Neurological Disorders and Stroke, all components of NIH, and collaborators. Additional funding was provided by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases, under grant number R01DK55615, and by The Rocket Fund.

More information: Y Zhang et al. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. Journal of Allergy and Clinical Immunology DOI: 10.1016/j.jaci.2014.02.013 (2014).

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Study unlocks basis of key immune protein's two-faced role

7 hours ago

A Brigham and Women's Hospital-led team has identified a long sought-after partner for a key immune protein, called TIM-3, that helps explain its two-faced role in the immune system—sometimes dampening it, other times stimulating ...

Profilin can induce severe food-allergic reactions

Nov 25, 2014

(HealthDay)—Profilins are complete food allergens in food-allergic patient populations that are exposed to high levels of grass pollen, according to a study published in the December issue of Allergy.

Structured education program beneficial for anaphylaxis

Nov 21, 2014

(HealthDay)—A structured education intervention improves knowledge and emergency management for patients at risk for anaphylaxis and their caregivers, according to a study published online Nov. 19 in Allergy.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.