From Mexican wave to retinal wave: Why sharing data is good for science

April 8, 2014
Credit: Oyvind Solstad

From the way we learn, to how our memories are made and stored, the workings of our brains depend on connections forged between billions of neurons, yet much about how our nervous system develops remains a mystery.

Now, researchers at Cambridge, York, Newcastle and Imperial College London have developed a system allowing neurophysiologists to share with each other, something they hope will generate in the field. The results are published in the journal GigaScience.

The first type of data they collected and standardised are recordings of so called 'retinal waves'. During , generate signals that rapidly spread across from one cell to another, much like a Mexican wave in a football stadium. These patterns of activity are thought to help forge the from the eye to the brain.

To record retinal waves, scientists use multielectrode arrays (tiny electrical devices). In this research, the team took 366 recordings from 12 different studies published between 1993 and 2014, converted them all to HDF5 – a standard open source format – and published them in a web-based 'virtual laboratory' called CARMEN.

According to lead author Dr Stephen Eglen from the Cambridge Computational Biology Institute: "Unlike other fields such as genomics, there hasn't been much public data sharing in neuroscience, which could be because the data are heterogeneous and hard to annotate, or because researchers are reluctant to share data with a competitor."

But Eglen believes there is much to be gained by a more cooperative approach. "There are two main benefits to sharing," he said. "As well as leading to other collaborations and more interesting research, it also means that other people can check what you've done, which leads to more robust research. And if the taxpayer funds research, then I think it's important for those results to be publicly available."

More information: "A data repository and analysis framework for spontaneous neural activity recordings in developing retina." Stephen John Eglen, et al. GigaScience 2014, 3:3  DOI: 10.1186/2047-217X-3-3

Related Stories

Neural simulations hint at the origin of brain waves

July 24, 2013

For almost a century, scientists have been studying brain waves to learn about mental health and the way we think. Yet the way billions of interconnected neurons work together to produce brain waves remains unknown. Now, ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.