From Mexican wave to retinal wave: Why sharing data is good for science

April 8, 2014
Credit: Oyvind Solstad

From the way we learn, to how our memories are made and stored, the workings of our brains depend on connections forged between billions of neurons, yet much about how our nervous system develops remains a mystery.

Now, researchers at Cambridge, York, Newcastle and Imperial College London have developed a system allowing neurophysiologists to share with each other, something they hope will generate in the field. The results are published in the journal GigaScience.

The first type of data they collected and standardised are recordings of so called 'retinal waves'. During , generate signals that rapidly spread across from one cell to another, much like a Mexican wave in a football stadium. These patterns of activity are thought to help forge the from the eye to the brain.

To record retinal waves, scientists use multielectrode arrays (tiny electrical devices). In this research, the team took 366 recordings from 12 different studies published between 1993 and 2014, converted them all to HDF5 – a standard open source format – and published them in a web-based 'virtual laboratory' called CARMEN.

According to lead author Dr Stephen Eglen from the Cambridge Computational Biology Institute: "Unlike other fields such as genomics, there hasn't been much public data sharing in neuroscience, which could be because the data are heterogeneous and hard to annotate, or because researchers are reluctant to share data with a competitor."

But Eglen believes there is much to be gained by a more cooperative approach. "There are two main benefits to sharing," he said. "As well as leading to other collaborations and more interesting research, it also means that other people can check what you've done, which leads to more robust research. And if the taxpayer funds research, then I think it's important for those results to be publicly available."

Explore further: Tiny magnetic coils modulate neural activity, may be safer for deep-brain implants

More information: "A data repository and analysis framework for spontaneous neural activity recordings in developing retina." Stephen John Eglen, et al. GigaScience 2014, 3:3  DOI: 10.1186/2047-217X-3-3

Related Stories

Neural simulations hint at the origin of brain waves

July 24, 2013

For almost a century, scientists have been studying brain waves to learn about mental health and the way we think. Yet the way billions of interconnected neurons work together to produce brain waves remains unknown. Now, ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.