Proteomics discovers link between muscle damage and cerebral malaria

Malaria-related complications remain a major cause of death for children in many parts of the world. Why some children develop these complications while others don't is still not understood.

A multidisciplinary group of scientists and under the direction of Peter Nilsson (SciLifeLab and KTH, Sweden), Mats Wahlgren (Karolinska Institutet, Sweden), Delmiro Fernandez-Reyes (Brighton & Sussex Medical School, UK) and Olugbemiro Sodeinde (College of Medicine, University of Ibadan, Nigeria), report results of a systematic proteomics approach to the question in PLOS Pathogens. They compared proteins in the blood of uninfected children with those in the blood of infected ones, and also proteins in blood from children with different severe malaria syndromes with proteins in blood from uncomplicated cases.

The researchers analyzed over 1000 proteins in more than 700 children. To make the study more rigorous, the samples were divided into "discovery" and "verification" sets, and only associations that were found in both were reported. There were 41 proteins that could distinguish between malaria patients and uninfected children from the same community. Most of these were components of the inflammatory response.

The researchers also found proteins that were specific to the two most deadly complicated malaria syndromes in children, namely severe malaria anemia and . For both, combinations of proteins, so-called "signatures", could identify the specific syndrome with high accuracy.

For cerebral malaria, the researchers found that a group of muscle-specific proteins was present in the 's blood, suggesting that muscle cells are damaged. At least some of that damage might be associated with coma, which occurs in cerebral malaria but also in other diseases like meningitis.

The researchers conclude that their study could "provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection between the two most fatal syndromes of childhood malaria" and that muscle-specific proteins in plasma might be "potential indicators of cerebral ".

More information: Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, et al. (2014) Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria. PLoS Pathog 10(4): e1004038. DOI: 10.1371/journal.ppat.1004038

add to favorites email to friend print save as pdf

Related Stories

Improving human immunity to malaria

Aug 01, 2012

The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells. ...

How adhesive protein causes malaria

Sep 25, 2007

Researchers at the Swedish medical university Karolinska Institutet (KI) and the Swedish Institute for Infectious Disease Control (SMI) have identified the biochemical mechanism behind the adhesive protein that give rise ...

Recommended for you

Ebola isolation at US base 'pretty much vacation'

10 minutes ago

With plenty of flat screen TVs, game nights and even an outdoor fire pit, life in isolation for members of the U.S. military who have returned from the Ebola mission in West Africa can look a lot like summer camp.

Chinese-built Ebola center dedicated in Liberia

3 hours ago

China, one of the first countries to send aid to battle Ebola in West Africa, ramped up the assistance significantly Tuesday by opening a 100-bed treatment center in Liberia as rows of uniformed Chinese army ...

Superbug in SE Michigan shows recent decline

6 hours ago

A new study finds a decrease in an emergent strain of methicillin-resistant S. aureus (MRSA) that is resistant to last line defense antibiotics. Researchers examined the prevalence of vancomycin-resistant Staphylococcus aureus (V ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.