Proteomics discovers link between muscle damage and cerebral malaria

Malaria-related complications remain a major cause of death for children in many parts of the world. Why some children develop these complications while others don't is still not understood.

A multidisciplinary group of scientists and under the direction of Peter Nilsson (SciLifeLab and KTH, Sweden), Mats Wahlgren (Karolinska Institutet, Sweden), Delmiro Fernandez-Reyes (Brighton & Sussex Medical School, UK) and Olugbemiro Sodeinde (College of Medicine, University of Ibadan, Nigeria), report results of a systematic proteomics approach to the question in PLOS Pathogens. They compared proteins in the blood of uninfected children with those in the blood of infected ones, and also proteins in blood from children with different severe malaria syndromes with proteins in blood from uncomplicated cases.

The researchers analyzed over 1000 proteins in more than 700 children. To make the study more rigorous, the samples were divided into "discovery" and "verification" sets, and only associations that were found in both were reported. There were 41 proteins that could distinguish between malaria patients and uninfected children from the same community. Most of these were components of the inflammatory response.

The researchers also found proteins that were specific to the two most deadly complicated malaria syndromes in children, namely severe malaria anemia and . For both, combinations of proteins, so-called "signatures", could identify the specific syndrome with high accuracy.

For cerebral malaria, the researchers found that a group of muscle-specific proteins was present in the 's blood, suggesting that muscle cells are damaged. At least some of that damage might be associated with coma, which occurs in cerebral malaria but also in other diseases like meningitis.

The researchers conclude that their study could "provide key elements toward the discovery of distinct mechanisms in the human response to malaria infection between the two most fatal syndromes of childhood malaria" and that muscle-specific proteins in plasma might be "potential indicators of cerebral ".

More information: Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, et al. (2014) Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria. PLoS Pathog 10(4): e1004038. DOI: 10.1371/journal.ppat.1004038

add to favorites email to friend print save as pdf

Related Stories

Improving human immunity to malaria

Aug 01, 2012

The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells. ...

How adhesive protein causes malaria

Sep 25, 2007

Researchers at the Swedish medical university Karolinska Institutet (KI) and the Swedish Institute for Infectious Disease Control (SMI) have identified the biochemical mechanism behind the adhesive protein that give rise ...

Recommended for you

WHO: Ebola vaccine trials in W. Africa in January

12 hours ago

Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe, a top World Health Organization official ...

Ebola cases rise sharply in western Sierra Leone

12 hours ago

After emerging months ago in eastern Sierra Leone, Ebola is now hitting the western edges of the country where the capital is located with dozens of people falling sick each day, the government said Tuesday. So many people ...

User comments