News tagged with mechanical properties

Related topics: graphene , carbon nanotube

An ear with the right look and feel

(Medical Xpress)—Like a fingerprint, their shape is so characteristic that one can identify us by them. The outer part of our ears has a complex structure that surgeons have a hard time replacing when disease ...

Jun 03, 2013
popularity 5 / 5 (2) | comments 0 | with audio podcast

Imaging the network traffic in our brains

MRI brain scans no longer just show the various regions of brain activity; nowadays the networks in the brain can now be imaged with ever greater precision. This will make functional MRI (fMRI) increasingly ...

Sep 18, 2012
popularity 5 / 5 (1) | comments 0
  • Pages: 1

DNA structure

DNA structure shows a variety of forms, both double-stranded and single-stranded. The mechanical properties of DNA, which are directly related to its structure, are a significant problem for cells. Every process which binds or reads DNA is able to use or modify the mechanical properties of DNA for purposes of recognition, packaging and modification. The extreme length (a chromosome may contain a 10 cm long DNA strand), relative rigidity and helical structure of DNA has led to the evolution of histones and of enzymes such as topoisomerases and helicases to manage a cell's DNA. The properties of DNA are closely related to its molecular structure and sequence, particularly the weakness of the hydrogen bonds and electronic interactions that hold strands of DNA together compared to the strength of the bonds within each strand.

Experimental techniques which can directly measure the mechanical properties of DNA are relatively new, and high-resolution visualization in solution is often difficult. Nevertheless, scientists have uncovered large amount of data on the mechanical properties of this polymer, and the implications of DNA's mechanical properties on cellular processes is a topic of active current research.

It is important to note the DNA found in many cells can be macroscopic in length - a few centimetres long for each human chromosome. Consequently, cells must compact or "package" DNA to carry it within them. In eukaryotes this is carried by spool-like proteins known as histones, around which DNA winds. It is the further compaction of this DNA-protein complex which produces the well known mitotic eukaryotic chromosomes.

This text uses material from Wikipedia licensed under CC BY-SA