Researchers produce images of AIDS virus that may shape vaccine

May 29, 2006
AIDS Virus
Envelope Spikes on Surface of HIV-1 virus. Credit: Courtesy of Kenneth Roux

As the world marks the 25th year since the first diagnosed case of AIDS, groundbreaking research by scientists at Florida State University has produced remarkable three-dimensional images of the virus and the protein spikes on its surface that allow it to bind and fuse with human immune cells.

Findings from this AIDS research could boost the development of vaccines that will thwart infection by targeting and crippling the sticky HIV-1 spike proteins. In fact, said principal investigator and FSU Professor Kenneth H. Roux, at least two laboratories already are crafting vaccine candidates based on preliminary results uncovered by his team of structural biologists.

Those results are described in the online edition of the journal Nature.

Never before generated in such intricate detail, the super-sized images of the virus and its viral spikes have given researchers their first good look at the pathogen's complex molecular surface architecture that facilitates the infection process.

"Until now, despite intensive study by many laboratories, the design details of the spikes and their distribution pattern on the surface of the virus membrane have been poorly understood, which has limited our understanding of how the virus infection actually occurs and frustrated efforts to create vaccines," Roux said.

To produce the images, research associate Ping Zhu, Roux, and their colleagues used a state-of-the art technique called cryoelectron microscopy tomography. It generates three-dimensional images similar to those from a CAT scan, but at the level of viruses and molecules rather than tissues and organs.

They imaged HIV samples as well as a mutant SIV (non-human primate) strain, genetically engineered for the study by collaborators at the National Cancer Institute to express about 74 spikes as opposed to the 14 found on the HIV virus –- more spikes make it easier to work with. The virus samples were suspended in a thin liquid film stretched across the holes of a small copper grid and then flash-frozen, creating a solid form of ice that is more like clear glass than the typical crystalline form in ice cubes.

Once inside the electron microscope, electrons bombarded the samples from myriad angles, magnifying it more than 43,000 times to reveal its surprising structure –- absent the degree of distortion caused by the more typical imaging methods involving drying and staining of specimens.

As a result, the researchers were able to hone in on the envelope –- the lipid membrane covering the virus itself. They imaged the spikes protruding from the envelope, which contain the only viral protein molecules on the HIV surface. The FSU scientists also were able to capture super-sized images of both the head of the spike and its supporting stalk. The spike head is responsible for binding the virus to the target cell. Its stalk is responsible for the fusion event in which HIV injects its genes into the human host cells for which the virus has a natural affinity –- T lymphocytes and macrophages.

"Antibodies that effectively bind to either of these spike parts will neutralize the virus to prevent infection," said Roux, a member of FSU's biological science faculty since 1978.

His biggest surprise: the stalk has legs.

"Researchers thought the spike stalk was comprised of a tight collection of three rods bound together with the head of the spike perched on top. But our images reveal that the stalk is split into three legs, spread more like a tripod, which increases their contact with the viral membrane," Roux said. "Seeing the tripod stalk suggests a novel mechanism by which HIV-1 is able to so effectively fuse with our cells. That essential knowledge should help us design better weapons to fight the virus."

FSU Arts and Sciences Dean Joseph Travis has declared the work "a beautiful example of what happens when strong, sound basic science is applied to a very difficult problem."

The National Institutes of Health funded the two-year study, conducted by members of the department of biological science and the Institute of Molecular Biophysics at FSU.

AIDS has produced one of the worst pandemics ever known. About 25 million people have died and 40 million are infected worldwide –- including 1 million in the United States.

Source: Florida State University, by Libby Fairhurst

Explore further: To spread, nervous system viruses sabotage cell, hijack transportation

Related Stories

To spread, nervous system viruses sabotage cell, hijack transportation

May 30, 2012
Herpes and other viruses that attack the nervous system may thrive by disrupting cell function in order to hijack a neuron's internal transportation network and spread to other cells.

Study shows algae virus can infiltrate mammalian cells

October 21, 2015
New research led by the University of Nebraska-Lincoln has provided the first direct evidence that an algae-infecting virus can invade and potentially replicate within some mammalian cells.

Computer simulations reveal every curve of the dengue viral envelope

January 25, 2017
The near-spherical outer structure of the dengue virus has been recreated in remarkable detail by a team of bioinformaticians in Singapore. The virtual model could show researchers how the virus fuses with and infects human ...

Scientists find clues to neutralizing coronaviruses such as MERS

March 2, 2016
When the respiratory illness SARS (Severe Acute Respiratory Syndrome) emerged in 2003, it killed at least 775 people before it was contained. Nine years later, MERS (Middle East Respiratory Syndrome) began circulating in ...

Physical principles for scalable neural recording

July 2, 2013
(Medical Xpress)—It took nearly two months, but the videos from the May 6th-7th national BRAIN Initiative meeting are now available online. Although the title of that workshop made central mention of the idea Physical and ...

A new tool for detecting and destroying norovirus

March 6, 2015
Infection with highly contagious noroviruses, while not usually fatal, can lead to a slew of unpleasant symptoms such as excessive vomiting and diarrhea. Current treatment options are limited to rehydration of the patient. ...

Recommended for you

Changes in diet may improve life expectancy in Parkinson's patients

November 24, 2017
New research from the University of Aberdeen shows that weight loss in people with Parkinson's disease leads to decreased life expectancy, increased risk of dementia and more dependency on care.

Study suggests colon cancer cells carry bacteria with them when they metastasize

November 24, 2017
(Medical Xpress)—A team of researchers working at Harvard University has found evidence that suggests a certain type of bacteria found in colon cancer tumors makes its way to tumors in other body parts by traveling with ...

Study opens new avenue in quest to develop tuberculosis vaccine

November 24, 2017
A team of scientists led by the University of Southampton has taken an important step forward in research efforts that could one day lead to an effective vaccine against the world's deadliest infectious disease.

Discovery of potent parasite protein may lead to new therapeutic options for inflammatory bowel conditions

November 24, 2017
A single protein from a worm parasite may one day offer new therapeutic options for treating inflammatory bowel diseases like Crohn's or Ulcerative Colitis, that avoid the potentially serious side effects of current immunosuppressant ...

Air pollution can increase asthma risk in adults, even at low levels

November 24, 2017
Living close to a busy road can be bad for your respiratory health if you are middle aged, new Australian research has found.

Promising new treatment for rare pregnancy cancer leads to remission in patients

November 24, 2017
An immunotherapy drug can be used to cure women of a rare type of cancer arising from pregnancy when existing treatments have failed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.