The beginnings of the thinking brain

June 28, 2006
Earliest identified human cortical neuron

Oxford researchers have identified the very first neurons in the human cerebral cortex, the part of the brain that sets us apart from all other animals.

Dr Irina Bystron and colleagues from the Department of Physiology, Anatomy and Genetics at the University of Oxford, together with Professor Pasko Rakic, a leading neuroscientist at Yale University, describe for the first time in Nature Neuroscience the very earliest nerve cells in the part of the developing human brain that becomes the cerebral cortex.

The cerebral cortex is largely responsible for human cognition, playing an essential role in perception, memory, thought, language, mental ability, intellect and consciousness. It is also responsible for our voluntary actions. As adults our cerebral cortex accounts for 40 per cent of the brain’s weight and is composed of about 20 billion neurons. The new findings show that its first neurons are in place much earlier than previously thought – approximately 31 days after fertilization, when the entire embryo is only about 4 mm long and shaped a bit like a comma, before the development of arms, legs or eyes.

The team used cutting-edge techniques, including technologies that allowed them to study which genes are turned on in individual cells. These methods enabled them to identify the first neurons, which they call ‘predecessor’ cells.

Predecessor cells are unusual in many respects. Unlike normal nerve cells, they do not have fibres connecting to other neurons. They do, however, have very long thick processes, or ‘tails’, one stretching out in front of the cell body, the other trailing behind. Analysis of the skeleton of these cells suggests that they move upwards in the surface of the developing brain and enter the future cortex. Their processes form a vast network, and the researchers speculate that this web of processes might be used to guide the migration and development of later cells. Professor Colin Blakemore, one of the authors on the paper, said: ‘We suspect that these early cells have a special role in development, setting the scene for and controlling neurons that are generated later, and dying when their job is done.’

Unravelling the early development of the cerebral cortex may help in understanding the many developmental disorders of higher brain function, such as autism, schizophrenia, childhood epilepsy, developmental dyslexia and mental retardation.

It might also provide the key to a question that has puzzled evolutionary biologists, namely how the cerebral hemispheres of our hominid ancestors expanded massively, starting about five million years ago. Despite only a 1 per cent genetic difference between humans and gorillas, the human cerebral cortex is four times larger, and our ability to think, understand and to develop culture is dramatically different. It is possible that understanding the way the cerebral cortex develops, and how its development differs from that of other animals, might help explain what happened to give us such clever brains. The researchers are particularly interested in the fact that predecessor cells have never been described in other animals. ‘A re-examination of early brain development in other species is urgently needed to determine whether predecessor cells are really unique to the human brain,’ said Dr Bystron.

Source: University of Oxford

Explore further: New functions of hippocampus unveiled to bring insights to causes and treatments of brain diseases

Related Stories

New functions of hippocampus unveiled to bring insights to causes and treatments of brain diseases

September 29, 2017
A research team led by Lam Woo Professor of Biomedical Engineering Ed X. Wu of the Department of Electrical and Electronic Engineering at the University of Hong Kong has made major breakthrough in unveiling the mysteries ...

New class of molecules may protect brain from stroke, neurodegenerative diseases

September 28, 2017
Research led by Nicolas Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health New Orleans, has discovered a new class of molecules in the brain that synchronize cell-to-cell communication ...

Newborns with CHD show signs of brain impairment even before cardiac surgery

October 5, 2017
Survival rates have soared for infants born with congenital heart disease (CHD), the most common birth defect, thanks to innovative cardiac surgery that sometimes occurs within hours of birth. However, the neurodevelopmental ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Recommended for you

Researchers discover fundamental rules for how the brain controls movement

October 24, 2017
The human brain is a mysterious supercomputer. Billions of neurons buzz within an intricate network that controls our every thought, feeling, and movement. And we've only just begun to understand how it all works.

Dolphin brains show signs of Alzheimer's Disease

October 24, 2017
Study suggests Alzheimer's disease and Type 2 diabetes might both be the price of a longer lifespan, with altered insulin function the common cause.

Data-driven malaria early warning system could predict outbreaks months in advance

October 24, 2017
A Johns Hopkins University scientist is part of a team working on a method to predict malaria outbreaks months in advance, potentially giving public health officials a chance to protect people from a disease that poses a ...

A little myelin goes a long way to restore nervous system function

October 24, 2017
In the central nervous system of humans and all other mammals, a vital insulating sheath composed of lipids and proteins around nerve fibers helps speed the electrical signals or nerve impulses that direct our bodies to walk, ...

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.