The beginnings of the thinking brain

June 28, 2006
Earliest identified human cortical neuron

Oxford researchers have identified the very first neurons in the human cerebral cortex, the part of the brain that sets us apart from all other animals.

Dr Irina Bystron and colleagues from the Department of Physiology, Anatomy and Genetics at the University of Oxford, together with Professor Pasko Rakic, a leading neuroscientist at Yale University, describe for the first time in Nature Neuroscience the very earliest nerve cells in the part of the developing human brain that becomes the cerebral cortex.

The cerebral cortex is largely responsible for human cognition, playing an essential role in perception, memory, thought, language, mental ability, intellect and consciousness. It is also responsible for our voluntary actions. As adults our cerebral cortex accounts for 40 per cent of the brain’s weight and is composed of about 20 billion neurons. The new findings show that its first neurons are in place much earlier than previously thought – approximately 31 days after fertilization, when the entire embryo is only about 4 mm long and shaped a bit like a comma, before the development of arms, legs or eyes.

The team used cutting-edge techniques, including technologies that allowed them to study which genes are turned on in individual cells. These methods enabled them to identify the first neurons, which they call ‘predecessor’ cells.

Predecessor cells are unusual in many respects. Unlike normal nerve cells, they do not have fibres connecting to other neurons. They do, however, have very long thick processes, or ‘tails’, one stretching out in front of the cell body, the other trailing behind. Analysis of the skeleton of these cells suggests that they move upwards in the surface of the developing brain and enter the future cortex. Their processes form a vast network, and the researchers speculate that this web of processes might be used to guide the migration and development of later cells. Professor Colin Blakemore, one of the authors on the paper, said: ‘We suspect that these early cells have a special role in development, setting the scene for and controlling neurons that are generated later, and dying when their job is done.’

Unravelling the early development of the cerebral cortex may help in understanding the many developmental disorders of higher brain function, such as autism, schizophrenia, childhood epilepsy, developmental dyslexia and mental retardation.

It might also provide the key to a question that has puzzled evolutionary biologists, namely how the cerebral hemispheres of our hominid ancestors expanded massively, starting about five million years ago. Despite only a 1 per cent genetic difference between humans and gorillas, the human cerebral cortex is four times larger, and our ability to think, understand and to develop culture is dramatically different. It is possible that understanding the way the cerebral cortex develops, and how its development differs from that of other animals, might help explain what happened to give us such clever brains. The researchers are particularly interested in the fact that predecessor cells have never been described in other animals. ‘A re-examination of early brain development in other species is urgently needed to determine whether predecessor cells are really unique to the human brain,’ said Dr Bystron.

Source: University of Oxford

Explore further: Interneuron migration impairement could lead to macrocephaly

Related Stories

Interneuron migration impairement could lead to macrocephaly

February 23, 2018
A team from the University of Liège (Belgium) has discovered crosstalk between the migrating inhibitory interneurons and the stem cells that generate the excitatory neurons. The researchers discovered that this cellular ...

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Zika virus could help combat brain cancer

February 22, 2018
Zika virus, known for causing microcephaly in babies by attacking the cells that give rise to the fetus's cerebral cortex, could be an alternative for treatment of glioblastoma, the most common and aggressive malignant brain ...

Alzheimer's research—intracellular calcium store malfunction leads to brain hyperactivity

February 9, 2018
Alzheimer´s disease is the key cause of dementia in elderly patients. Those affected develop deficiencies in their abilities to learn, think logically, communicate, and to master the challenges of everyday life. To find ...

Researchers map out genetic 'switches' behind human brain evolution

January 11, 2018
UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors ...

How the brain constructs the world

February 9, 2018
How are raw sensory signals transformed into a brain representation of the world that surrounds us? The question was first posed over 100 years ago, but new experimental strategies make the challenge more exciting than ever. ...

Recommended for you

Metabolite therapy proves effective in treating C. difficile in mice

March 20, 2018
A team of UCLA researchers found that a metabolite therapy was effective in mice for treating a serious infection of the colon known as Clostridium difficile infection, or C. difficile.

Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018
A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and ...

Scientists discover new causes of cellular decline in prematurely aging kids

March 19, 2018
In a recent paper published in Cell Reports, Saint Louis University researchers have uncovered new answers about why cells rapidly age in children with a rare and fatal disease. The data points to cellular replication stress ...

Don't blame adolescent social behavior on hormones

March 19, 2018
Reproductive hormones that develop during puberty are not responsible for changes in social behavior that occur during adolescence, according to the results of a newly published study by a University at Buffalo researcher.

We can read each other's emotions from surprisingly tiny changes in facial color, study finds

March 19, 2018
Our faces broadcast our feelings in living color—even when we don't move a muscle.

Paraplegic rats walk again after therapy, now we know why

March 19, 2018
With the help of robot-assisted rehabilitation and electrochemical spinal cord stimulation, rats with clinically relevant spinal cord injuries regained control of their otherwise paralyzed limbs. But how do brain commands ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.