How Much the Eye Tells the Brain

July 26, 2006
How Much the Eye Tells the Brain
Two broad classes of ganglion cell types in the guinea pig retina: brisk cells, which are larger and transmit electrical impulses faster, and sluggish, which are smaller and slower. Credit: Kristin Koch,University of Pennsylvania School of Medicine; Current Biology

Researchers at the University of Pennsylvania School of Medicine estimate that the human retina can transmit visual input at about the same rate as an Ethernet connection, one of the most common local area network systems used today. They present their findings in the July issue of Current Biology. This line of scientific questioning points to ways in which neural systems compare to artificial ones, and can ultimately inform the design of artificial visual systems.

Much research on the basic science of vision asks what types of information the brain receives; this study instead asked how much. Using an intact retina from a guinea pig, the researchers recorded spikes of electrical impulses from ganglion cells using a miniature multi-electrode array. The investigators calculate that the human retina can transmit data at roughly 10 million bits per second. By comparison, an Ethernet can transmit information between computers at speeds of 10 to 100 million bits per second.

The retina is actually a piece of the brain that has grown into the eye and processes neural signals when it detects light. Ganglion cells carry information from the retina to the higher brain centers; other nerve cells within the retina perform the first stages of analysis of the visual world. The axons of the retinal ganglion cells, with the support of other types of cells, form the optic nerve and carry these signals to the brain.

Investigators have known for decades that there are 10 to 15 ganglion cell types in the retina that are adapted for picking up different movements and then work together to send a full picture to the brain. The study estimated the amount of information that is carried to the brain by seven of these ganglion cell types.

The guinea pig retina was placed in a dish and then presented with movies containing four types of biological motion, for example a salamander swimming in a tank to represent an object-motion stimulus. After recording electrical spikes on an array of electrodes, the researchers classified each cell into one of two broad classes: “brisk” or “sluggish,” so named because of their speed.

The researchers found that the electrical spike patterns differed between cell types. For example, the larger, brisk cells fired many spikes per second and their response was highly reproducible. In contrast, the smaller, sluggish cells fired fewer spikes per second and their responses were less reproducible.

But, what’s the relationship between these spikes and information being sent? “It’s the combinations and patterns of spikes that are sending the information. The patterns have various meanings,” says co-author Vijay Balasubramanian, PhD, Professor of Physics at Penn. “We quantify the patterns and work out how much information they convey, measured in bits per second.”

Calculating the proportions of each cell type in the retina, the team estimated that about 100,000 guinea pig ganglion cells transmit about 875,000 bits of information per second. Because sluggish cells are more numerous, they account for most of the information. With about 1,000,000 ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection, or 10 million bits per second.

“Spikes are metabolically expensive to produce,” says lead author Kristin Koch, a PhD student in the lab of senior author Peter Sterling, PhD, Professor of Neuroscience. “Our findings hint that sluggish cells might be ‘cheaper,’ metabolically speaking, because they send more information per spike. If a message must be sent at a high rate, the brain uses the brisk channels. But if a message can afford to be sent more slowly, the brain uses the sluggish channels and pays a lower metabolic cost.”

“In terms of sending visual information to the brain, these brisk cells are the Fedex of the optic system, versus the sluggish cells, which are the equivalent of the U.S. mail,” notes Sterling. “Sluggish cells have not been studied that closely until now. The amazing thing is that when it’s all said and done, the sluggish cells turned out to be the most important in terms of the amount of information sent.”

Study co-authors are Judith McLean and Michael A. Freed, from Penn, and Ronen Segev and Michael J. Berry III, from Princeton University. The research was supported by grants from the National Institutes of Health and the National Science Foundation.

Source: University of Pennsylvania School of Medicine

Explore further: Neuroscientist sees disease-fighting potential in brain organoids

Related Stories

Neuroscientist sees disease-fighting potential in brain organoids

December 12, 2018
Human brain disorders have always presented researchers with a daunting challenge. They're hard to study in laboratory mice because they affect the very organ that separates us from animals. And they're difficult to study ...

The blood test that could save sight

December 12, 2018
A new blood test is being developed at The Australian National University (ANU) that can detect patients at risk of dry age-related macular degeneration (AMD) and potentially save millions of people from going blind.

Biologists use 'mini retinas' to better understand connection between eye and brain

October 25, 2018
IUPUI biologists are growing 'mini retinas' in the lab from stem cells to mimic the growth of the human retina. The researchers hope to use the research to restore sight when critical connections between the eye and the brain ...

Can chiropractic care disrupt vision?

October 1, 2018
For those in the habit of getting their neck adjusted by a chiropractor, the University of Michigan Kellogg Eye Center has interesting information to know about: High velocity neck manipulation has been shown to result in ...

Making the right connections

October 3, 2018
Researchers at VIB and KU Leuven have uncovered a new molecular interaction that governs the formation of specific functional connections between two types of neurons. It gives an important clue as to how unique interactions ...

The study and town that changed the health of a generation

October 10, 2018
It's been 70 years since a small, middle-class community 23 miles west of Boston became the linchpin in helping to solve the mysteries of heart disease.

Recommended for you

Treatment shown to improve the odds against bone marrow cancer

December 15, 2018
Hope has emerged for patients with a serious type of bone marrow cancer as new research into a therapeutic drug has revealed improved outcomes and survival rates.

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Self-perception and reality seem to line-up when it comes to judging our own personality

December 14, 2018
When it comes to self-assessment, new U of T research suggests that maybe we do have a pretty good handle on our own personalities after all.

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

Levels of gene-expression-regulating enzyme altered in brains of people with schizophrenia

December 14, 2018
A study using a PET scan tracer developed at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH) has identified, for the first time, epigenetic differences between the brains of individuals ...

Can stem cells help a diseased heart heal itself? Researchers achieve important milestone

December 14, 2018
A team of Rutgers scientists, including Leonard Lee and Shaohua Li, have taken an important step toward the goal of making diseased hearts heal themselves—a new model that would reduce the need for bypass surgery, heart ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.