How Much the Eye Tells the Brain

July 26, 2006
How Much the Eye Tells the Brain
Two broad classes of ganglion cell types in the guinea pig retina: brisk cells, which are larger and transmit electrical impulses faster, and sluggish, which are smaller and slower. Credit: Kristin Koch,University of Pennsylvania School of Medicine; Current Biology

Researchers at the University of Pennsylvania School of Medicine estimate that the human retina can transmit visual input at about the same rate as an Ethernet connection, one of the most common local area network systems used today. They present their findings in the July issue of Current Biology. This line of scientific questioning points to ways in which neural systems compare to artificial ones, and can ultimately inform the design of artificial visual systems.

Much research on the basic science of vision asks what types of information the brain receives; this study instead asked how much. Using an intact retina from a guinea pig, the researchers recorded spikes of electrical impulses from ganglion cells using a miniature multi-electrode array. The investigators calculate that the human retina can transmit data at roughly 10 million bits per second. By comparison, an Ethernet can transmit information between computers at speeds of 10 to 100 million bits per second.

The retina is actually a piece of the brain that has grown into the eye and processes neural signals when it detects light. Ganglion cells carry information from the retina to the higher brain centers; other nerve cells within the retina perform the first stages of analysis of the visual world. The axons of the retinal ganglion cells, with the support of other types of cells, form the optic nerve and carry these signals to the brain.

Investigators have known for decades that there are 10 to 15 ganglion cell types in the retina that are adapted for picking up different movements and then work together to send a full picture to the brain. The study estimated the amount of information that is carried to the brain by seven of these ganglion cell types.

The guinea pig retina was placed in a dish and then presented with movies containing four types of biological motion, for example a salamander swimming in a tank to represent an object-motion stimulus. After recording electrical spikes on an array of electrodes, the researchers classified each cell into one of two broad classes: “brisk” or “sluggish,” so named because of their speed.

The researchers found that the electrical spike patterns differed between cell types. For example, the larger, brisk cells fired many spikes per second and their response was highly reproducible. In contrast, the smaller, sluggish cells fired fewer spikes per second and their responses were less reproducible.

But, what’s the relationship between these spikes and information being sent? “It’s the combinations and patterns of spikes that are sending the information. The patterns have various meanings,” says co-author Vijay Balasubramanian, PhD, Professor of Physics at Penn. “We quantify the patterns and work out how much information they convey, measured in bits per second.”

Calculating the proportions of each cell type in the retina, the team estimated that about 100,000 guinea pig ganglion cells transmit about 875,000 bits of information per second. Because sluggish cells are more numerous, they account for most of the information. With about 1,000,000 ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection, or 10 million bits per second.

“Spikes are metabolically expensive to produce,” says lead author Kristin Koch, a PhD student in the lab of senior author Peter Sterling, PhD, Professor of Neuroscience. “Our findings hint that sluggish cells might be ‘cheaper,’ metabolically speaking, because they send more information per spike. If a message must be sent at a high rate, the brain uses the brisk channels. But if a message can afford to be sent more slowly, the brain uses the sluggish channels and pays a lower metabolic cost.”

“In terms of sending visual information to the brain, these brisk cells are the Fedex of the optic system, versus the sluggish cells, which are the equivalent of the U.S. mail,” notes Sterling. “Sluggish cells have not been studied that closely until now. The amazing thing is that when it’s all said and done, the sluggish cells turned out to be the most important in terms of the amount of information sent.”

Study co-authors are Judith McLean and Michael A. Freed, from Penn, and Ronen Segev and Michael J. Berry III, from Princeton University. The research was supported by grants from the National Institutes of Health and the National Science Foundation.

Source: University of Pennsylvania School of Medicine

Explore further: How do we sense moonlight? Daylight? There's a cell for that

Related Stories

How do we sense moonlight? Daylight? There's a cell for that

September 28, 2017
Reporting in today's Cell, neuroscientists at Boston Children's Hospital describe an unexpected way that we sense the overall degree of illumination in our environment. They found that neurons in the retina of the eye divvy ...

Study indicates proof of concept for using a surrogate liquid biopsy to provide genetic profile of retinoblastoma tumors

October 12, 2017
Retinoblastoma is a tumor of the retina that generally affects children under 5 years of age. If not diagnosed early, retinoblastoma may result in loss of one or both eyes and can be fatal. Unlike most cancers that are diagnosed ...

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

How video goggles and a tiny implant could cure blindness

August 25, 2017
At 16, Lynda Johnson was ready to learn how to drive. Yes, she had a progressive eye disease, retinitis pigmentosa, which already had stolen her night vision. But throughout her childhood, the Millbrae, California, girl had ...

Researchers measure the basis of color vision

September 6, 2017
Dr. Wolf M. Harmening from University Eye Hospital Bonn, together with American colleagues, studied color vision by probing individual sensory cells - photoreceptors - in the human eye. The results confirm that the photoreceptor ...

Artificial vision: what people with bionic eyes see

August 17, 2017
Visual prostheses, or "bionic eyes", promise to provide artificial vision to visually impaired people who could previously see. The devices consist of micro-electrodes surgically placed in or near one eye, along the optic ...

Recommended for you

A little myelin goes a long way to restore nervous system function

October 24, 2017
In the central nervous system of humans and all other mammals, a vital insulating sheath composed of lipids and proteins around nerve fibers helps speed the electrical signals or nerve impulses that direct our bodies to walk, ...

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

One in 4 women and 1 in 6 men aged 65+ will be physically disabled in Europe by 2047

October 23, 2017
By 2047 one in four women and one in six men aged 65 and above is expected to be living with a physical disability that will severely restrict everyday activities, reveals an analysis published in the online journal BMJ Open.

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Running on autopilot: Scientists find important new role for 'daydreaming' network

October 23, 2017
A brain network previously associated with daydreaming has been found to play an important role in allowing us to perform tasks on autopilot. Scientists at the University of Cambridge showed that far from being just 'background ...

Protein regulates vitamin A metabolic pathways, prevents inflammation

October 23, 2017
A team of researchers from Case Western Reserve University School of Medicine have discovered how uncontrolled vitamin A metabolism in the gut can cause harmful inflammation. The discovery links diet to inflammatory diseases, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.