How Much the Eye Tells the Brain

July 26, 2006
How Much the Eye Tells the Brain
Two broad classes of ganglion cell types in the guinea pig retina: brisk cells, which are larger and transmit electrical impulses faster, and sluggish, which are smaller and slower. Credit: Kristin Koch,University of Pennsylvania School of Medicine; Current Biology

Researchers at the University of Pennsylvania School of Medicine estimate that the human retina can transmit visual input at about the same rate as an Ethernet connection, one of the most common local area network systems used today. They present their findings in the July issue of Current Biology. This line of scientific questioning points to ways in which neural systems compare to artificial ones, and can ultimately inform the design of artificial visual systems.

Much research on the basic science of vision asks what types of information the brain receives; this study instead asked how much. Using an intact retina from a guinea pig, the researchers recorded spikes of electrical impulses from ganglion cells using a miniature multi-electrode array. The investigators calculate that the human retina can transmit data at roughly 10 million bits per second. By comparison, an Ethernet can transmit information between computers at speeds of 10 to 100 million bits per second.

The retina is actually a piece of the brain that has grown into the eye and processes neural signals when it detects light. Ganglion cells carry information from the retina to the higher brain centers; other nerve cells within the retina perform the first stages of analysis of the visual world. The axons of the retinal ganglion cells, with the support of other types of cells, form the optic nerve and carry these signals to the brain.

Investigators have known for decades that there are 10 to 15 ganglion cell types in the retina that are adapted for picking up different movements and then work together to send a full picture to the brain. The study estimated the amount of information that is carried to the brain by seven of these ganglion cell types.

The guinea pig retina was placed in a dish and then presented with movies containing four types of biological motion, for example a salamander swimming in a tank to represent an object-motion stimulus. After recording electrical spikes on an array of electrodes, the researchers classified each cell into one of two broad classes: “brisk” or “sluggish,” so named because of their speed.

The researchers found that the electrical spike patterns differed between cell types. For example, the larger, brisk cells fired many spikes per second and their response was highly reproducible. In contrast, the smaller, sluggish cells fired fewer spikes per second and their responses were less reproducible.

But, what’s the relationship between these spikes and information being sent? “It’s the combinations and patterns of spikes that are sending the information. The patterns have various meanings,” says co-author Vijay Balasubramanian, PhD, Professor of Physics at Penn. “We quantify the patterns and work out how much information they convey, measured in bits per second.”

Calculating the proportions of each cell type in the retina, the team estimated that about 100,000 guinea pig ganglion cells transmit about 875,000 bits of information per second. Because sluggish cells are more numerous, they account for most of the information. With about 1,000,000 ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection, or 10 million bits per second.

“Spikes are metabolically expensive to produce,” says lead author Kristin Koch, a PhD student in the lab of senior author Peter Sterling, PhD, Professor of Neuroscience. “Our findings hint that sluggish cells might be ‘cheaper,’ metabolically speaking, because they send more information per spike. If a message must be sent at a high rate, the brain uses the brisk channels. But if a message can afford to be sent more slowly, the brain uses the sluggish channels and pays a lower metabolic cost.”

“In terms of sending visual information to the brain, these brisk cells are the Fedex of the optic system, versus the sluggish cells, which are the equivalent of the U.S. mail,” notes Sterling. “Sluggish cells have not been studied that closely until now. The amazing thing is that when it’s all said and done, the sluggish cells turned out to be the most important in terms of the amount of information sent.”

Study co-authors are Judith McLean and Michael A. Freed, from Penn, and Ronen Segev and Michael J. Berry III, from Princeton University. The research was supported by grants from the National Institutes of Health and the National Science Foundation.

Source: University of Pennsylvania School of Medicine

Explore further: Scientists regenerate retinal cells in mice

Related Stories

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Researchers shed light on how our eyes process visual cues

June 7, 2017
The mystery of how human eyes compute the direction of moving light has been made clearer by scientists at The University of Queensland.

Retinal cells 'go with the flow' to assess own motion through space

June 7, 2017
Think of the way that a long flat highway seems to widen out around you from a single point on the horizon, while in the rear-view mirror everything narrows back to a single point behind you. Or think of the way that when ...

How cells divide tasks and conquer work

June 7, 2017
Despite advances in neuroscience, the brain is still very much a black box—no one even knows how many different types of neurons exist. Now, a scientist from the Salk Institute has used a mathematical framework to better ...

Computations of visual motion in the brain

May 22, 2017
Botond Roska and his group at the FMI have elucidated how the retina and the visual cortex work together in visual motion perception. They found that cortical cells, which respond preferentially to backward image motion, ...

Exposure to light causes emotional and physical responses in migraine sufferers: study

June 26, 2017
People experiencing migraines often avoid light and find relief in darkness. A new study led by researchers at Beth Israel Deaconess Medical Center (BIDMC) has revealed a previously unknown connection between the light-sensitive ...

Recommended for you

To reduce postoperative pain, consider sleep—and caffeine

August 18, 2017
Sleep is essential for good mental and physical health, and chronic insufficient sleep increases the risk for several chronic health problems.

Novel approach to track HIV infection

August 18, 2017
Northwestern Medicine scientists have developed a novel method of tracking HIV infection, allowing the behavior of individual virions—infectious particles—to be connected to infectivity.

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Despite benefits, half of parents against later school start times

August 18, 2017
Leading pediatrics and sleep associations agree: Teens shouldn't start school so early.

Population health impact of infants born small for gestational age in low- and middle-income countries

August 18, 2017
In low-and middle-income countries, it is common for babies to be born of low birth weight, due to either inadequate growth in utero (fetal growth restriction) and/or preterm birth, (birth before 37 weeks gestation). Maternal ...

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.