Scientists coax nerve fibers to re-grow after spinal cord injury

July 18, 2006

Researchers at the University of Michigan Medical School and Johns Hopkins University have developed a treatment that helps animals with traumatic spinal cord injuries grow new nerve fibers.

The study has implications for treating people who may face amputation of an arm after an injury in which nerves are wrenched from the spinal cord. Called brachial plexus avulsion, this type of injury occurs when an arm is pulled violently away from the body. In people, it most often occurs in motorcycle accidents or during childbirth.

The findings will be published in the July 18 issue of the Proceedings of the National Academy of Sciences.

The researchers chose to mimic this type of injury in their study, because it involves nerves at the boundary between the spinal cord and the peripheral nervous system that connects to the rest of the body.

Rats with nerve injuries that received a nerve-transplant and were treated with an enzyme called sialidase, grew more than twice as many new nerve fibers in the spinal cord compared to untreated rats. Moreover, the researchers found that the new fibers were made by nerve cells residing in the spinal cord.

"A new treatment to enhance our current surgical management of brachial plexus avulsion in people would be welcomed by patients and surgeons alike," says Lynda Yang, M.D., assistant professor of neurosurgery at the University of Michigan Medical School and lead author of the study.

While surgeons can sometimes reattach the yanked nerves to the spinal cord, this treatment is not as effective as physicians or patients would like. This is in part because nerves in the brain and spinal cord, unlike those in the rest of the body, fail to grow new nerve fibers.

"If you sever your finger, it can be surgically reattached, and nerve fibers typically grow back so that you can use your finger again; in contrast, the injured brain and spinal cord are rocky terrain for nerve fiber growth. Finding ways to smooth that road might help the nerve fibers to re-grow,” says co-author Ronald Schnaar, Ph.D., professor of pharmacology and neuroscience at the Institute of Basic Biomedical Sciences at Johns Hopkins University.

Nerves in the brain and spinal cord are surrounded by signals from other cells in the injured area that stop them from growing. Molecules in the spinal cord, called axon regeneration inhibitors, ARIs, are known to stop nerve fibers from growing. The researchers tested three enzymes, including sialidase, which are known to destroy ARIs.

Rats that received a nerve transplant followed by treatment with sialidase showed the greatest improvement in nerve re-growth.

In the next phase of research, Yang will determine whether the new nerves are able to re-establish muscle control. "We're very interested in seeing how much function you can get back," she says.

The researchers were funded by the Department of Neurosurgery at the University of Michigan Medical School, and two branches of the National Institutes of Health – the National Institute of Neurological Disorders and Stroke and the National Heart, Lung, and Blood Institute.

Additional contributing authors are Ileana Lorenzini, Katarina Vajn, Andrea Mountney, and Lawrence Schramm from Johns Hopkins University.

Source: Johns Hopkins University

Explore further: Genetic mutation associated with a developmental disorder could be a treatment target

Related Stories

Genetic mutation associated with a developmental disorder could be a treatment target

October 19, 2017
The discovery of a rare genetic mutation associated with a devastating developmental disorder called arthrogryposis multiplex congenita could also provide researchers with a new treatment target for a group of related neurodegenerative ...

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Neuroscientists find 'gatekeeper' in itching sensations plays no role in pain transmission

October 3, 2017
A study from North Carolina State University researchers shows that a neurotransmitter involved in relaying itching sensations from the skin to the spinal cord and into the brain plays no role in pain transmission.

Neurobiologist studies how the brain learns to interpret what the body touches

October 6, 2017
It's a touchy subject—literally. Samuel Andrew Hires, assistant professor of biological sciences, wants to know how the brain learns to understand what we're touching. Understanding how this works could one day be a boon ...

Free iPhone app could guide MS research, treatment

October 3, 2017
For some diseases, a simple blood test is all that's needed to estimate severity or confirm a diagnosis. Not so for multiple sclerosis.

Recommended for you

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Pneumonia vaccine under development provides 'most comprehensive coverage' to date, alleviates antimicrobial concerns

October 20, 2017
In 2004, pneumonia killed more than 2 million children worldwide, according to the World Health Organization. By 2015, the number was less than 1 million.

Evidence found of oral bacteria contributing to bowel disorders

October 20, 2017
(Medical Xpress)—An international team of researchers has found evidence that suggests certain types of oral bacteria may cause or exacerbate bowel disorders. In their paper published in the journal Science, the group describes ...

Researchers report startling glaucoma protein discovery

October 20, 2017
A discovery in a protein associated with glaucoma was so unheard of that for over two years, researchers ran it through a gauntlet of lab tests and published a new research paper on it. The tests validated what they initially ...

Probing how Americans think about mental life

October 20, 2017
When Stanford researchers asked people to think about the sensations and emotions of inanimate or non-human entities, they got a glimpse into how those people think about mental life.

Can adults develop ADHD? New research says probably not

October 20, 2017
Adults likely do not develop ADHD, according to new research by FIU clinical psychologist Margaret Sibley.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.