Lighting up the heart

September 22, 2006
Lighting up the heart
Live and dead heart cells. Credit: Elinor Griffiths

A major breakthrough in research could lead to improved recovery of the heart when it is re-started after a heart attack or cardiac surgery.

For the first time ever, researchers at the University of Bristol have been able to directly measure energy levels inside living heart cells, in real time, using the chemical that causes fireflies to light up.

Dr Elinor Griffiths said: "Being able to see exactly what's going on in heart cells will be of great benefit to understanding heart disease."

The research is published today (22nd September, 2006) in the Journal of Biological Chemistry.

The 'power stations' within heart cells that make energy are called mitochondria. They convert energy from food into chemical energy called adenosine triphosphate, or ATP.

Under normal conditions, mitochondria are able to make ATP extremely rapidly when the heart is stressed, such as during exercise or in "fight-or-flight" mode.

However, if the cells are made to beat suddenly from rest, a situation that happens when the heart is re-started after cardiac surgery or a heart attack, the team found there is a lag phase where the supply of ATP drops before mitochondrial production starts again, potentially preventing the heart from beating properly.

The researchers made use of a protein called luciferase, which is normally found in the tails of firefly and is what causes them to light up. Using molecular biological techniques, they transferred modified forms of the luciferase DNA into heart cells – the cells could then make their own luciferase, and the modifications enabled the luciferase to be produced inside the mitochondria.

Since luciferase lights up in the presence of ATP, the amount of light, and hence the amount of ATP, could be detected using a microscope and a highly sensitive camera.

Dr Griffiths explained: "The breakthrough presented by this technique could be of benefit in heart diseases where mitochondria cannot make enough ATP. When that happens the heart does not have enough energy to perform its function of pumping blood efficiently which can result in a heart attack."

Exactly how mitochondria tailor the supply of ATP to demand is not fully known. Being able to directly measure ATP levels inside mitochondria of living heart cells in real time will go a long way towards understanding this more fully.

Source: University of Bristol

Explore further: Likely new treatment target identified for diabetic retinopathy

Related Stories

Likely new treatment target identified for diabetic retinopathy

October 10, 2017
In oxygen-compromising conditions like diabetes, the body grows new blood vessels to help, but the result is often leaky, dysfunctional vessels that make bad matters worse.

Research reveals how physical exercise protects the heart

August 21, 2017
Regular exercise is considered an important form of treatment for heart failure, a condition in which the heart is unable to pump enough blood to meet the body's needs. The benefits of exercise include prevention of cachexia, ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Study identifies new way to predict prognosis for heart failure patients

December 11, 2013
Johns Hopkins researchers have identified a new way to predict which heart failure patients are likely to see their condition get worse and which ones have a better prognosis. Their study is one of the first to show that ...

Researchers identify new target for common heart condition

January 8, 2013
Researchers have found new evidence that metabolic stress can increase the onset of atrial arrhythmias, such as atrial fibrillation (AF), a common heart condition that causes an irregular and often abnormally fast heart rate. ...

DNA damage response links short telomeres, heart disorder in Duchenne muscular dystrophy

October 31, 2016
Progressively shortening telomeres—the protective caps on the end of chromosomes—may be responsible for the weakened, enlarged hearts that kill many sufferers of Duchenne muscular dystrophy, according to a study by researchers ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.