Research shows cocaine changes proteins and brain function

October 31, 2006

In the first large-scale analysis of proteins in the brains of individuals addicted to cocaine, researchers have uncovered novel proteins and mechanisms that may one day lead to new treatment options to fight addiction.

The results, reported in the current issue of Molecular Psychiatry, released on-line today, show differences in the amounts of 50 proteins and point to profound changes in brain function related to long-term cocaine use, said Scott E. Hemby, Ph.D., of Wake Forest University of Medicine.

The researcher used technology so advanced it was like looking for differences in brain tissue with "floodlights" rather than a "flashlight," he said. Hemby and his colleagues analyzed thousands of proteins from brain tissue obtained from individuals who died of cocaine overdose and compared these "protein profiles" with individuals who died of non-drug related causes.

"The findings provide new insights into the long-term effects and damage that cocaine has on the human brain and will help guide future animal studies to further delineate the biochemical changes that comprise the addicted brain," said Hemby, associate professor of physiology and pharmacology.

The researchers compared the proteome (the entire complement of proteins expressed at a given time) between the two groups by separating all of the proteins and then using high-throughput mass spectrometry which allowed the accurate identifcation of thousands of proteins simultaneously, Hemby said.

The unbiased nature of the technology enables the determination of novel proteins and pathway involved in disease. Using post-mortem brain tissue samples from the Brain Endowment Bank at the University of Miami, the investigators analyzed protein expression in the nucleus accumbens, a part of the brain involved in the addictive effects of drugs, in 10 cocaine-overdose victims and 10 drug-free individuals.

Analysis of thousands of proteins revealed differences between the two groups in the amounts of approximately 50 proteins, most of which correspond to changes in the ability of the brain cells to strenghten their connections and communicate with one another.

Understanding the coordinated involvement of multiple proteins in cocaine abuse provides insight into the molecular basis of the disease and offers new targets for pharmaco-therapeutic intervention for drug-abuse-related disorders, he said.

"These studies are an important and significant step to further our understanding of the vast and long-term consequences of cocaine use and may provide insights into novel targets for medication development," Hemby said.

Source: Wake Forest University Baptist Medical Center

Explore further: Study illuminates serotonin contributions to cocaine's allure

Related Stories

Study illuminates serotonin contributions to cocaine's allure

June 28, 2017
Once a hip drug of the '70s and '80s party scene, cocaine is not only making a comeback, it's proving its staying power thanks to its potent allure. In fact, Drug Enforcement Administration officials say that traffickers ...

Cocaine decreases activity of a protein necessary for normal functioning of the brain's reward system

April 22, 2012
New research from Mount Sinai Medical Center in New York reveals that repeated exposure to cocaine decreases the activity of a protein necessary for normal functioning of the brain's reward system, thus enhancing the reward ...

Scientists focus on brain protein and antibiotic to block cocaine craving

June 3, 2013
A new study conducted by a team of Indiana University neuroscientists demonstrates that GLT1, a protein that clears glutamate from the brain, plays a critical role in the craving for cocaine that develops after only several ...

New insight into how brain 'learns' cocaine addiction

August 1, 2013
A team of researchers says it has solved the longstanding puzzle of why a key protein linked to learning is also needed to become addicted to cocaine. Results of the study, published in the Aug. 1 issue of the journal Cell, ...

Methylphenidate modulates brain-circuit connectivity in cocaine-addicted individuals

June 27, 2013
(Medical Xpress)—Several brain-imaging studies have revealed disruptions in communication between brain regions in people addicted to cocaine. A new study conducted at the U.S. Department of Energy's Brookhaven National ...

Party drug's brain tricks explained for first time

October 31, 2011
(Medical Xpress) -- A researcher at the University of Sydney has discovered how the increasingly common street drug mephedrone affects the brain, helping to explain why it is potentially such an addictive substance.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.