Making the connection between a sound and a reward changes brain and behavior

October 19, 2006

If you've ever wondered how you recognize your mother's voice without seeing her face or how you discern your cell phone's ring in a crowded room, researchers may have another piece of the answer.

Their work indicates that once you figure out your mother's voice is a good thing – most days - fairly significant changes occur in the sensory cortex, the part of the brain that responds to sound.

"When something starts to predict a good outcome is going to happen, the sensory part of the brain that responds to those events starts to respond more strongly, making it easier for the brain to cause a behavioral response," says Dr. David T. Blake, neuroscientist at the Medical College of Georgia and lead author on a study in the Oct. 19 issue of Neuron.

By monitoring the action potentials of about a dozen key neurons in monkey test subjects, researchers found neuronal responsiveness increases dramatically after just a few training sessions.

These neuronal fireworks were short-lived, replaced by a rewiring of the brain that shows the animal has learned, Dr. Blake says.

In the few monkeys that initially didn't make the connection that a change in pitch in a series of sounds meant they were getting a juice reward, no brain changes occurred.

"The same processes happen to people as we learn, especially in the area of sensory discrimination," Dr. Blake says. "We learn how to tell people's faces apart, we learn how to distinguish different words whether they are delivered orally or written. We can identify different speakers by the tenor and tone of their voice. All of these abilities are part of sensory discrimination, so we are studying how the brain changes as part of sensory discrimination learning."

The findings have wide implications for learning, including improving treatment for children with language learning impairments, such as dyslexia, and increasing literacy, Dr. Blake says. California-based Scientific Learning, a neuroscience company that grew out of the University of California, San Francisco, already is using advances in understanding behavioral learning to develop computer programs that dramatically improve the reading skills of dyslexic children. Another San Francisco-based neuroscience company, Posit Science, is exploring its potential in age-related cognitive decline, he says.

"People have studied since the time of Pavlov how associating sensory stimuli with reward causes behavioral change," Dr. Blake says. "What we have done is identify how that change occurs and over what time course it occurs in one part of these multiple brain systems that are linked together so that Pavlov's dog can start salivating after the bell rings."

More than 100 years ago, while studying the gastric system of dogs, the Russian physiologist found what he called a conditioned reflex: that after a period of ringing a metronome during feeding that the dogs began salivating just hearing the metronome's beat.

Dr. Blake is studying the neuronal responses of more humanlike monkeys with the idea of better understanding why.

Researchers were able to monitor neuronal response using technology Dr. Blake helped develop that is similar to deep brain stimulation used in patients but with much smaller electrodes.

In work published in 2002 in the Proceedings of the National Academy of Sciences, Dr. Blake first taught monkeys that when they leaned forward to break an infrared beam, a series of sounds would start. "If they leaned back after a change in the sound series, they got an appetitive reward," he says. "When they do this, the response of their neurons to those sounds doubles and triples in the first two days after they learn that very simple behavior. They learn that moving their head at that time will lead to reward."

The new study indicates that the monkeys just have to make the connection between the sound change and juice reward for brain changes to occur and that at least some of them don't have to move a muscle to make that happen.

"This work suggests the learning does not have to be active for some animals, that they don't all have to cause the reward to make the brain changes," says Dr. Blake. "They just have to learn that the stimulus predicts the reward."

"It's an important computational point because there is a lot of interest right now in the brain's ability to backtrack in time from rewards to find out the earliest thing that predicts that reward. When the monkey identifies the sound change as the cue it's supposed to respond to get rewarded, learning and brain changes happen."

Source: Medical College of Georgia

Explore further: Intermittent electrical brain stimulation improves memory

Related Stories

Intermittent electrical brain stimulation improves memory

September 7, 2017
Intermittent electrical stimulation of an area deep inside the brain that degenerates in Alzheimer's appears to improve working memory, scientists report.

Deep Brain Stimulation shows promise for patients with chronic, treatment resistant anorexia nervosa

March 6, 2013
In a world first, a team of researchers at the Krembil Neuroscience Centre and the University Health Network have shown that Deep Brain Stimulation (DBS) in patients with chronic, severe and treatment-resistant Anorexia Nervosa ...

Scientists find way to monitor progress of stem cells after transplantation into brain

April 30, 2015
Investigators at the Stanford University School of Medicine have devised a way to monitor neural stem cells after they've been transplanted into the brain.

Does being dehydrated increase your pain perception and reduce your brain blood flow?

February 22, 2016
New research from the College of Health has shed light on the impact dehydration has on our perception of pain, and our blood pressure and brain blood flow response.

Changing environment affects stress level in mice

July 9, 2012
(Medical Xpress) -- The negative impact of stress on health is widely documented. So is the importance of reducing stress in one’s life. But a new animal study is the first to model stress reduction and its biological ...

Study illuminates serotonin contributions to cocaine's allure

June 28, 2017
Once a hip drug of the '70s and '80s party scene, cocaine is not only making a comeback, it's proving its staying power thanks to its potent allure. In fact, Drug Enforcement Administration officials say that traffickers ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.