Unexpected findings about development of nervous system

October 18, 2006

In his dissertation work, Per-Henrik Edqvist at Uppsala University in Sweden has characterized the molecular development of the retina in the eye with the aim of understanding how the nervous system develops. He has attained several unexpected results that may be of importance to the future treatment of damage to the nervous system.

The retina of the eye, which is part of the central nervous system, is where visual impressions take their initial shape. The retina consists of photoreceptors and several different specialized nerve cells that use various networks to coordinate impressions from the light-sensitive photoreceptors before the information is relayed to the brain.

Per-Henrik Edqvist has studied how the retina’s complex structure of specialized cells is formed from a small number of retina stem cells during the fetal development of chickens.

Above all, he has examined how one of the retina’s specialized cell types, so-called horizontal cells, are formed and reach maturity. Their task is to receive and integrate information from a large number of photoreceptors, and there are at least two functionally different types.

“We have characterized the molecular development of these different horizontal cell types in order to better understand how the nervous system is formed,” explains Per-Henrik Edqvist.

He shows that the different types take on their determined role at a very early stage in development, which conflicts with certain conventional models of the development of the retina. What’s more, they do not develop simultaneously but rather one after the other, and in their development they undergo a highly unexpected cell migration from their birth site to their ultimate position in the retina.

“The fact that they migrate at different times toward or away from signals that can influence their continued development may be the mechanism that governs them in different developmental directions,” says Per-Henrik Edqvist.

The dissertation enhances our knowledge of how the central nervous system is formed during fetal development, and thereby our understanding of how disturbances of the brain and ocular system can occur and be prevented.

“By understanding these mechanisms, we hope some day to be able to use stem cells to create spare parts that can replace damaged or dead nerve cells in the retina.”

Source: The Swedish Research Council

Explore further: FDA to crack down on risky stem cell offerings

Related Stories

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Exercise aids recovery from brain injury

November 20, 2017
Exercise is an important part of recovery for people with brain injury, University of Queensland researchers have found.

High-fat diet may change breast milk makeup, affect baby's health

November 22, 2017
New research suggests that following a high-fat diet during lactation—regardless of diet during pregnancy—alters RNA activity in breast milk. The changes in genetic material may increase the risk of metabolic disorders ...

Chemo brain starts during cancer's progression, not just after chemotherapy

November 21, 2017
The memory and thinking problems experienced by cancer survivors, known as "chemo brain" or "chemo fog," are not just the result of chemotherapy treatment, they may start as tumors form and develop, suggests a Baycrest-led ...

Rebuilding spinal cords with an engineer's toolkit

November 16, 2017
Like an earthquake that ruptures a road, traumatic spinal cord injuries render the body's neural highway impassable. To date, there are neither workable repairs nor detours that will restore signal flow between the brain ...

Study analyzes mutations in cerebrospinal fluid in lung cancer with brain metastases

November 17, 2017
Researchers have explored the analysis of mutations in cerebrospinal fluid of lung cancer patients with brain metastases in a study presented at the ESMO Asia 2017 Congress. Tumour tissue from brain metastasis is difficult ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.