Manmade protein shows promise for cancer, macular degeneration

November 9, 2006
Manmade protein shows promise for cancer, macular degeneration
Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and Augusta Veterans Affairs Medical Center. Credit: Medical College of Georgia

Potentially blinding blood vessel growth in the cornea resulting from eye injury or even surgery can be reduced by more than 50 percent with a new manmade protein, researchers say.

"We believe eventually we'll be able to use this protein to help patients in many situations where blood vessel formation is detrimental, including cancer, diabetic retinopathy and macular degeneration," says Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and Augusta Veterans Affairs Medical Center. Dr. Ambati is corresponding author of the study published in the November issue of Investigative Ophthalmology & Visual Science.

The body can produce new blood vessels to promote healing after trauma, such as a corneal transplant, a significant corneal scratch from a contact lens or retinal oxygen deprivation caused by diabetes or aging. This natural response, called angiogenesis, becomes detrimental when new growth obstructs vision or when a tumor pirates the process to survive.

In an animal model, researchers used the protein they developed to reverse obstructive growth as long as one month after injury, says Dr. Ambati. That's a very long time after injury in a mouse's lifetime, indicating even well-established blood vessels are susceptible to intraceptor-mediated regression, he says.

This intraceptor traps vascular endothelial growth factor, or VEGF, inside the protein making machinery of a cell. It's made with a portion of a VEGF receptor called sflt-1, a free-floating receptor recently shown to help keep the cornea clear by taking up and effectively neutralizing VEGF. Although other molecules have an anti-angiogenic effect, sflt-1 was the only one they found that spurs corneal blood vessels when blocked. The work, published in October in Nature, was led by teams at MCG and the University of Kentucky.

"Now we have designed a novel recombinant molecule where we take a subunit of sflt-1 and couple it with a four-amino-acid peptide tail," he says. "The tail essentially handcuffs the manmade molecule within the protein-making machinery of the cell so that it stays there and anything that binds with it, namely VEGF, stays there too. So it's a very specific way of down-regulating a target protein."

In May 2005, Dr. Ambati and his colleagues published work in Investigative Ophthalmology & Visual Science showing the intraceptor helped reduce blood vessel development in the test tube and animal models for corneal injury and melanoma.

"Now we are talking about making them go away," says Dr. Ambati. While the work is still in the laboratory, it provides further evidence of the intraceptor's potential clinical application, he says.

The work shows the intraceptor prompts regression of blood vessels by inducing programmed cell death, or apoptosis, in the vascular endothelial cells that line the vessels.

"The biology of all this is showing this molecule interrupts the proper folding of proteins involved in existing blood vessels, which makes them die. It's a nice result," says Dr. Ambati.

Some existing anti-angiogenesis treatments target VEGF outside cells. "It is important to bind it within cells because certain cells, such as cancer and blood vessel cells, have the capability to produce their own VEGF and their own receptors," Dr. Ambati says. "Imagine trying to block from the outside a factory that has everything it needs inside. You have to throw a monkey wrench inside the factory and that is what we managed to do."

For the study, the manmade protein was injected directly into the cornea with a microneedle. "Ideally we would like to develop a topical eye drop with a long-term delivery system," says Dr. Ambati.

His research team is pursuing its work of the intraceptor's potential role in destroying blood vessels that help sustain cancers. They also are looking at a biodegradable polymer cage so they can encapsulate the intraceptor, tag it with a homing device for target cells and deliver it "like a missile carrying a payload" into the desired cells where it will slowly release the intraceptor, he says.

Source: Medical College of Georgia

Explore further: Study reveals how kidney disease happens

Related Stories

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Researchers find adult endothelial stem cells that can make fully functional blood vessels

February 15, 2018
The proper function of blood vessels is essential to life: blood vessels are responsible for transporting oxygen-rich red blood cells, nutrients, and immune cells throughout the body, to name just a few functions. Defects ...

Atlas of brain blood vessels provides fresh clues to brain diseases

February 14, 2018
Diseases of the brain vasculature are some of the most common causes of death in the West, but knowledge of brain blood vessels is limited. Now, researchers from Uppsala University and Karolinska Institutet in Sweden have ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.