Plague proteome reveals proteins linked to infection

November 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise and fall according to the disease's virulence.

The team, led by the Department of Energy laboratory staff scientists Mary Lipton and Kim Hixson, identified the proteins as “unique biomarkers related specifically to growth condition,” according to a study in the latest issue of the Journal of Proteome Research.

Biomarkers associated with disease progression show promise as detection tools in public health and biodefense and can guide drug and vaccine designers in their quest to disrupt the microbe’s ability to infect.

Y. pestis is the bacterium that caused the infamous Black Death plagues. Fleas are vectors for the disease and can spread it to rodent and human hosts. This study mimicked environmental conditions of Y. pestis in flea and in mammalian systems.

The proteome is a survey of proteins in a cell. Lipton, Hixson and colleagues at the PNNL-based Environmental Molecular Sciences Laboratory and Lawrence Livermore National Laboratory used proteomic techniques called accurate mass and time tag mass spectrometry and clustering analysis to compare abundance changes in 992 proteins under four different growth conditions, at 26 degrees and 37 degrees Celsius and with and without calcium.

They found 89 candidate proteins with similar abundance changes to 29 known virulence-linked proteins, and an additional 87 disease-condition-associated “hypothetical” proteins. The Institute for Genomic Research defines a hypothetical protein as one identified by a gene-finding algorithm that matches no other known protein sequence or contains no other evidence that it is an actual product of a gene.

The study authors said the same approach is being applied to a search for biomarkers across a wide range of biological systems, from other infectious agents such as Salmonella to soil microbes of interest in cleaning up toxic waste.

Source: DOE/Pacific Northwest National Laboratory

Explore further: Scientists achieve milestone against deadly diseases

Related Stories

Scientists achieve milestone against deadly diseases

June 21, 2012
Investigators at the Center for Structural Genomics of Infectious Diseases, a multi-institutional collaboration, have determined their 500th pathogen protein structure since beginning in 2007. Scientists at the Computation ...

UCSF team engineers 'safety switches' for immune therapies

July 25, 2012
(Medical Xpress) -- A UCSF team has harnessed a natural protein in bacteria to create a “pause switch” in immune cells, potentially leading to more effective and safer immune therapies for diseases such as cancer ...

How contagious pathogens could lead to nuke-level casualties

May 19, 2014
(Medical Xpress)—What if nuclear bombs could reproduce? Get your hands on one today, and in a week's time you've got a few dozen. Of course, nukes don't double on their own. But contagious, one-celled pathogens do. Properly ...

Recommended for you

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.