Thyroid cancer discovery points to new treatments, prevention

November 15, 2006

The actions of a mutated protein in cells linked to thyroid cancer have been uncovered by researchers at Queen's University. The discovery paves the way for the future development of drugs to more effectively target, treat and possibly even prevent both inherited and non-inherited thyroid cancers.

"We now know why this gene causes these tumours and can start looking at how best to target the mutant proteins so that the cells expressing them can be killed or stopped from growing," says Lois Mulligan, professor of pathology and molecular medicine with the Division of Cancer Biology and Genetics of the Queen's Cancer Research Institute. She is senior author of a study to be published November 15 in the journal Cancer Research.

Taranjit S. Gujral, a Ph D student in Queen's Department of Pathology and Molecular Medicine and lead author on the paper, developed three-dimensional models of the mutated RET protein implicated in a condition causing cancerous thyroid tumours. The model allowed him to predict and compare the protein's molecular actions and to see that the protein was ten times more active than normal in cells associated with Multiple Endocrine Neoplasia 2B (MEN 2B) syndrome, an inherited cancer syndrome. Co-authors on the study include Vinay K. Singh and Zongchao Jia of Queen's Biochemistry Department.

"It's like stepping on the gas in a car and getting way more gas than you bargained for," says Mulligan. "The mutation may cause some new actions but it chiefly does some actions more efficiently than normal."

MEN 2B is a dominantly inherited condition – the most severe of its kind – and is characterized by the early onset of thyroid tumours, sometimes even affecting infants, and can also cause developmental abnormalities including elongated bones, gastric problems and bumpy lips.

MEN 2B is currently treated with surgery, and other treatments, such as radiation and chemotherapy are not very effective. The study provides valuable tools for specific targeting of the actions of the protein that may aid in the development of anticancer therapies.

Source: Queen's University

Explore further: Exploring the causes of cancer

Related Stories

Exploring the causes of cancer

November 23, 2015
Cells communicate with other cells in our bodies by sending and receiving signals. Cancer can occur when these signals are "dysregulated" and abnormal cells grow out of control.

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.