How learning influences smell

December 20, 2006

The smell of an odor is not merely a result of chemical detection but is also influenced by what the smeller learns about the odor. Now, researchers have discovered how such "perceptual learning" about an odor influences processing of information from the purely olfactory chemical detection system. Wen Li, Jay Gottfried, and colleagues at Northwestern University reported their findings with human subjects in the December 21, 2006, issue of the journal Neuron.

"Verbal context strongly influences the perception of odor quality—a rose by any other name would not smell as sweet," explained the researchers. "For example, the same odorant smells entirely different depending on whether it is labeled as fresh cucumber or mildew."

"Learning also changes odor quality. A cherry odor becomes smokier in quality after being experienced together with a smoky odor. Thus, a given set of olfactory receptors activated by an odorant may not map directly onto a given odor percept. Rather, odor perception may rely on more synthetic, or integrative, mechanisms subserved by higher-order brain regions," they wrote.

In a previous study, also published in Neuron, Gottfried and colleagues had identified regions of the cortex involved in "coding" odors. In the new study, they sought to explore whether perceptual learning about an odor lead to changes in subjects’ ability to differentiate the odors.

In their experiments, the researchers first exposed volunteers to a set of odors and tested their ability to differentiate the odors. They next habituated the subjects to one of the odorants by exposing them to the odor for several minutes. Finally, they retested the subjects’ ability to distinguish the odors. The odors the subjects were asked to distinguish included those that had the same odor quality, for example floral, as well as those that shared characteristic molecular groups, for example being an alcohol.

As the subjects were undergoing the odor differentiation trials, their brains were scanned using functional magnetic resonance imaging (fMRI). This widely used technique for measuring brain activity involves using harmless radio waves and magnetic fields to measure blood flow in brain regions, which reflects brain activity.

Gottfried and his colleagues found the subjects better able to differentiate odors after the period of habituation to a similar odor. What’s more, the fMRI scans revealed increases in response in the odor-processing areas of their brains that reflected learning.

The researchers concluded that "prolonged exposure to one odorant resulted in improved differentiation among related odorants (and even among novel related odorants). Thus, with exposure to a floral-smelling alcohol (i.e., phenethyl alcohol), subjects effectively became floral ‘experts’ and simultaneously became experts for the underlying molecular group," they wrote. The subjects appeared to be "developing more refined, or differentiated, subcategories of these olfactory features," wrote the researchers.

"The current findings, along with recent data from our laboratory, provide further evidence that odor quality coding in olfactory cortex is not a straightforward outcome of odorant structure," they concluded. "In all likelihood, neural representations of odor quality are a dynamic product of lower-level coding from olfactory bulb and higher-level cortical inputs, under the regulation of learning and experience, attention, sensory context, and language.

"We speculate that the process of odor feature differentiation, via sensory exposure, may underlie much of the way that humans naturally learn to identify odors in the environment, with progressive and ever more refined differentiation, to the point where we are able to recognize thousands, if not hundreds of thousands, of different smells," they wrote.

"This mechanism may underlie the acquisition of fine-grained percepts that distinguish, for example, the smell of Rosa damascena (Bulgarian Rose) from that of Rosa centifolia (Rose Maroc), to the point where we would be able to appreciate the immense richness of aromas in everyday life," they wrote.

Source: Cell Press

Explore further: Single neuron consciousness in the binocular brain

Related Stories

Single neuron consciousness in the binocular brain

June 7, 2018
In contrast to unpaired organs like the heart, liver or appendix, the brain is recognizable as a roughly symmetrical organ. Consciousness is a seemingly unpaired phenomenon created by this paired organ. One way to explore ...

Taking the embarrassment out of health problems

May 28, 2018
We humans seem to have a nearly universal need to avoid embarrassment. It could be something as simple as mispronouncing a word or tripping as you walk along a crowded sidewalk. No matter the blunder, our response is instinctive: ...

Lesson in sleep learning: Associations formed in brains of sleeping volunteers remained intact when subjects were awake

August 26, 2012
Is sleep learning possible? A new Weizmann Institute study appearing today in Nature Neuroscience has found that if certain odors are presented after tones during sleep, people will start sniffing when they hear the tones ...

Potential new causes for the odor-producing disorder trimethylaminura

February 14, 2017
Just before Rare Disease Day 2017, a study from the Monell Center and collaborating institutions provides new insight into the causes of trimethylaminura (TMAU), a genetically-transmitted metabolic disorder that leads to ...

Humans can distinguish at least one trillion different odors, study shows

March 20, 2014
In a world perfumed by freshly popped popcorn and exhaust fumes, where sea breezes can mingle with the scents of sweet flowers or wet paint, new research has found that humans are capable of discriminating at least one trillion ...

Study finds how feedback from cortex helps mammals make fine distinctions about odors

June 4, 2015
Everyday tasks we may regard as "simple" - for example, knowing the difference between the smell of an orange and a pickle - are actually marvels of evolutionary development, the work of eons. A neuroscience team at Cold ...

Recommended for you

Team develops new way to grow blood vessels

August 17, 2018
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed ...

New imaging technique can spot tuberculosis infection in an hour

August 16, 2018
Guided by glowing bacteria, researchers have devised an imaging technique that can diagnose live tuberculosis in an hour and help monitor the efficacy of treatments. That's particularly critical because many TB strains have ...

Obesity, infertility and oxidative stress in mouse egg cells

August 16, 2018
Excessive body fat is associated with negative effects on female fertility and pregnancy. In mice, maternal obesity impairs proper development of egg precursor cells called oocytes. In a recent paper published in Molecular ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.