How learning influences smell

December 20, 2006

The smell of an odor is not merely a result of chemical detection but is also influenced by what the smeller learns about the odor. Now, researchers have discovered how such "perceptual learning" about an odor influences processing of information from the purely olfactory chemical detection system. Wen Li, Jay Gottfried, and colleagues at Northwestern University reported their findings with human subjects in the December 21, 2006, issue of the journal Neuron.

"Verbal context strongly influences the perception of odor quality—a rose by any other name would not smell as sweet," explained the researchers. "For example, the same odorant smells entirely different depending on whether it is labeled as fresh cucumber or mildew."

"Learning also changes odor quality. A cherry odor becomes smokier in quality after being experienced together with a smoky odor. Thus, a given set of olfactory receptors activated by an odorant may not map directly onto a given odor percept. Rather, odor perception may rely on more synthetic, or integrative, mechanisms subserved by higher-order brain regions," they wrote.

In a previous study, also published in Neuron, Gottfried and colleagues had identified regions of the cortex involved in "coding" odors. In the new study, they sought to explore whether perceptual learning about an odor lead to changes in subjects’ ability to differentiate the odors.

In their experiments, the researchers first exposed volunteers to a set of odors and tested their ability to differentiate the odors. They next habituated the subjects to one of the odorants by exposing them to the odor for several minutes. Finally, they retested the subjects’ ability to distinguish the odors. The odors the subjects were asked to distinguish included those that had the same odor quality, for example floral, as well as those that shared characteristic molecular groups, for example being an alcohol.

As the subjects were undergoing the odor differentiation trials, their brains were scanned using functional magnetic resonance imaging (fMRI). This widely used technique for measuring brain activity involves using harmless radio waves and magnetic fields to measure blood flow in brain regions, which reflects brain activity.

Gottfried and his colleagues found the subjects better able to differentiate odors after the period of habituation to a similar odor. What’s more, the fMRI scans revealed increases in response in the odor-processing areas of their brains that reflected learning.

The researchers concluded that "prolonged exposure to one odorant resulted in improved differentiation among related odorants (and even among novel related odorants). Thus, with exposure to a floral-smelling alcohol (i.e., phenethyl alcohol), subjects effectively became floral ‘experts’ and simultaneously became experts for the underlying molecular group," they wrote. The subjects appeared to be "developing more refined, or differentiated, subcategories of these olfactory features," wrote the researchers.

"The current findings, along with recent data from our laboratory, provide further evidence that odor quality coding in olfactory cortex is not a straightforward outcome of odorant structure," they concluded. "In all likelihood, neural representations of odor quality are a dynamic product of lower-level coding from olfactory bulb and higher-level cortical inputs, under the regulation of learning and experience, attention, sensory context, and language.

"We speculate that the process of odor feature differentiation, via sensory exposure, may underlie much of the way that humans naturally learn to identify odors in the environment, with progressive and ever more refined differentiation, to the point where we are able to recognize thousands, if not hundreds of thousands, of different smells," they wrote.

"This mechanism may underlie the acquisition of fine-grained percepts that distinguish, for example, the smell of Rosa damascena (Bulgarian Rose) from that of Rosa centifolia (Rose Maroc), to the point where we would be able to appreciate the immense richness of aromas in everyday life," they wrote.

Source: Cell Press

Explore further: Lesson in sleep learning: Associations formed in brains of sleeping volunteers remained intact when subjects were awake

Related Stories

Lesson in sleep learning: Associations formed in brains of sleeping volunteers remained intact when subjects were awake

August 26, 2012
Is sleep learning possible? A new Weizmann Institute study appearing today in Nature Neuroscience has found that if certain odors are presented after tones during sleep, people will start sniffing when they hear the tones ...

Potential new causes for the odor-producing disorder trimethylaminura

February 14, 2017
Just before Rare Disease Day 2017, a study from the Monell Center and collaborating institutions provides new insight into the causes of trimethylaminura (TMAU), a genetically-transmitted metabolic disorder that leads to ...

Humans can distinguish at least one trillion different odors, study shows

March 20, 2014
In a world perfumed by freshly popped popcorn and exhaust fumes, where sea breezes can mingle with the scents of sweet flowers or wet paint, new research has found that humans are capable of discriminating at least one trillion ...

Study finds how feedback from cortex helps mammals make fine distinctions about odors

June 4, 2015
Everyday tasks we may regard as "simple" - for example, knowing the difference between the smell of an orange and a pickle - are actually marvels of evolutionary development, the work of eons. A neuroscience team at Cold ...

Researcher finds elderly lose ability to distinguish between odors

November 10, 2011
Scientists studying how the sense of smell changes as people age, found that olfactory sensory neurons in those 60 and over showed an unexpected response to odor that made it more difficult to distinguish specific smells, ...

Odors that carry social cues seem to affect volunteers on the autism spectrum differently

November 27, 2017
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense ...

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.