Molecular structure reveals how botulinum toxin attaches to nerve cells

December 13, 2006

May lead to new therapeutics
Botulism is a life-threatening disease caused by exposure to botulinum neurotoxins, which are among the most potent toxins known. These neurotoxins are produced by Clostridium botulinum, a bacterium found in soil and food. In the body, the toxins bind to and enter neurons, interfering with nerve transmission and disrupting the communication between the nerve and muscle fibers throughout the body. Poisoning with botulinum toxins leads to an often-fatal paralysis, which is one reason they are considered among the highest biodefense research priorities by the U.S. government.

As part of its overall biodefense program, the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), has established the Regional Centers of Excellence for Biodefense and Emerging Infectious Diseases (RCEs) to support basic and applied research on biodefense-related agents, including botulinum neurotoxins. Now a group of researchers funded in part through two of these RCEs has provided a rare atomic glimpse of the initial step one of these toxins takes to gain entry into human neurons.

In an advanced online publication of the journal Nature, the scientists show structurally how botulinum neurotoxin B (one of seven toxins the bacterium produces) recognizes receptors on the surface of human neurons. The structure reveals how these toxins work at the molecular level and provides a promising new target for designing drugs to block the action of botulinum neurotoxins.

Source: NIH/National Institute of Allergy and Infectious Diseases

Explore further: Stem cells derived neuronal networks grown on a chip as an alternative to animal testing

Related Stories

Neurons from stem cells could replace mice in botulinum test

February 6, 2012

(PhysOrg.com) -- Using lab-grown human neurons, researchers from the University of Wisconsin-Madison have devised an effective assay for detecting botulinum neurotoxin, the agent widely used to cosmetically smooth the wrinkles ...

Disarming the botulinum neurotoxin

February 23, 2012

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Medical School of Hannover in Germany recently discovered how the botulinum neurotoxin, a potential bioterrorism agent, survives the hostile ...

Recommended for you

Complex mechanisms in Gaucher disease unravelled

March 30, 2017

Gaucher disease is a genetic disorder of lipid metabolism. Sphingosine, a compound as enigmatic as the sphinx, plays a key role in this metabolic disorder. Scientists from the Bonn research center caesar have identified some ...

Sick stem cells point to better MS drugs

March 29, 2017

Doctors seeking a cure for an aggressive form of multiple sclerosis keep chasing a mirage: no matter how well a drug works in the lab, it never seems to help many patients in the clinic. But after closely examining stem cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.