Stem cells used to create critical brain barrier in lab

December 20, 2006

Using neural stem cells derived from the fetal brains of rats, a team of Wisconsin scientists has devised a rudimentary blood-brain barrier in the lab.

Writing this week (Dec. 19) in the online editions of the Journal of Neurochemistry, a group led by University of Wisconsin-Madison professor of chemical and biological engineering Eric V. Shusta describes an experiment in which nascent rat neural stem cells were used to prod blood vessel cells to assume properties of the blood-brain barrier.

The blood-brain barrier is an anatomical feature in humans and other animals that protects the brain from chemicals and other harmful agents, but also limits the ability of clinicians to administer helpful drugs. It is a feature that can succumb to diseases such as Alzheimer's or acute conditions such as stroke, which can leave the brain vulnerable.

The blood-brain barrier is a critically important structure, Shusta says. Not only does it physically block the movement of substances between blood and brain, but it also possesses active properties that enable cells to pump unwanted molecules from cells back into the bloodstream. What's more, it has a metabolic function that can alter the chemical properties of the molecules that do get through to the brain.

"It dictates traffic in and out of the brain," Shusta explains.

Demonstrating that developing brain cells can release factors that may coax small blood vessels to exhibit the properties of the blood-brain barrier is important for a number of reasons. First, it forms a basis for understanding the mechanism that provides critical protection for the brain. Second, it may lead to insights regarding ways to overcome a barrier that frustrates neuroscientists, drug companies and clinicians who would like to sneak drugs past it to treat disease.

"What we have shown is that these neural stem cells have the ability to stimulate adult blood vessel endothelial cells to display enhanced blood-brain barrier properties," Shusta says. "This may lead to new in-vitro models of the blood-brain barrier."

That in turn may help researchers devise new therapies to treat brain disease and to form a clear understanding of how the barrier forms during the course of development.

"One of the big questions of (brain) development is how does the blood-brain barrier form and when does it form," says Shusta. "That's poorly understood."

The Wisconsin team, which includes UW-Madison School of Medicine and Public Health professor and stem cell authority Clive Svendsen, used brain stem cells grown as "neurospheres" to coax brain endothelial cells — flat cells that line blood vessels — to form a tighter, more dense barrier to small molecules that would otherwise diffuse through the blood vessel cells.

What is curious, according to Shusta and Svendsen, is that during development, brain endothelial cells form an enhanced barrier in the complete absence of astrocytes, a mature type of cell that serves as the two-by-four of the brain, but which do not appear in great numbers until birth. Astrocytes provide both structural support and are critical to the maintenance of the adult blood-brain barrier.

"One of the things we found is that the neural stem cells had a significant effect on the development of blood-brain barrier properties in the absence of astrocytes," Svendsen says. "It is possible these cells take on the role of astrocytes in early development and may be very important for establishing the initial barrier prior to the astrocytes taking over and completing the barrier."

The new work was accomplished by culturing endothelial cells in concert with the neurospheres. Somehow, the neurospheres prompted the endothelial cells to form tighter, denser cell-to-cell junctions, enhancing their ability to form a barrier and exclude small chemical molecules from passing through, a hallmark of the blood-brain barrier.

Using neural stem cells, Svendsen argues, provides a new way to assess how the barrier forms in early development, insight that might provide clues about how to mend the barrier when it is broken through disease or events such as stroke.

"Could neural progenitor cells or stem cells have a role in forming the blood-brain barrier after damage or disease? The answer seems to be yes," says Svendsen.

The team will next try to produce similar results using human endothelial cells and neural stem cells. "That would be very exciting," Svendsen acknowledges. "We don't have a good model for a human blood-brain barrier."

Development of a human model, presumably, would be of enormous interest to researchers and pharmaceutical companies as many promising drugs are composed of molecules too big to pass through the human barrier and thus cannot be used in the clinic.

Source: University of Wisconsin-Madison

Explore further: Copper excess in diabetes hinders our ability to make healthy blood vessels

Related Stories

Copper excess in diabetes hinders our ability to make healthy blood vessels

December 18, 2017
It's a metal we worry thieves will steal from our air conditioners or power lines, but inside our bodies too much copper can result in a much larger loss.

Researchers discover mechanism that allows rapid signal transmission between nerve cells

December 14, 2017
Researchers at Charité's NeuroCure Cluster of Excellence have successfully identified the mechanism behind rapid signal transmission. Their work, published in the current issue of Nature Neuroscience, shows that bridging ...

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

Cancer drug starts clinical trials in human brain-cancer patients

November 27, 2017
A drug that spurs cancer cells to self-destruct has been cleared for use in a clinical trial of patients with anaplastic astrocytoma, a rare malignant brain tumor, and glioblastoma multiforme, an aggressive late-stage cancer ...

Promising target for treating brain tumors in children

November 28, 2017
Findings published in Oncotarget offer new hope for children with highly aggressive brain tumors like atypical teratoid/rhabdoid tumor (AT/RT) and medulloblastoma. Previously, the authors of the study have shown that an experimental ...

Cell cycle proteins help immune cells trap microbes with nets made of DNA

November 20, 2017
In your bloodstream, there are immune cells called neutrophils that, when faced with a pathogenic threat, will expel their DNA like a net to contain it. These DNA snares are called neutrophil extracellular traps or NETs. ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.