Unfolded proteins may protect cells from dying

December 26, 2006
Seeing Red
Photoreceptor cells (red) in the developing eye of a fruit fly initiate an unfolded protein response (yellow) to help them cope with a stressful environment. Misfolded proteins are implicated in many diseases, including neurodegenerative diseases, diabetes and types of blindness. Credit: Rockefeller University

When cells get stressed, their proteins go unfolded. It's a reaction with a straightforward name: the unfolded protein response. Now, new research from Rockefeller University shows that this phenomenon actually serves a protective role; rather than a sign that the cell has given up, it may be a mechanism by which the cells cope with adversity. The findings were reported as an advance online publication in the EMBO Journal on the Dec. 14.

Diabetes, cancer, and neurodegenerative diseases including Huntington's and Parkinson's are linked to unfolded proteins. But Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology at Rockefeller and a Howard Hughes Medical Institute investigator, focused on autosomal dominant retinitis pigmentosa (ADRP), which causes blindness. Unfolded proteins linked to ADRP accumulate in the endoplasmic reticulum, an organelle where proteins are manufactured and packaged for transport to the cell surface, unlike some other forms of the unfolded protein response that occur in the cell's cytoplasm.

To understand what impact the unfolded protein response had on the cell, Hyung Don Ryoo, a former postdoc in the Steller lab, used a protein called xbp1, whose mRNA is alternatively spliced when the cell is stressed and the unfolded protein response is activated. Ryoo rigged xbp1 with a fluorescent marker that would light up whenever this alternatively spliced version of xbp1 was made, allowing him to detect every time the cell initiated an unfolded protein response.

"Our work shows that the unfolded protein response is a protective pathway, and therapeutically this is the type of pathway you want to boost to protect cells from stress induced death," says Steller, who is the Strang Professor at Rockefeller.

What's more, the researchers found that only cells that had endoplasmic reticulum stress, not cytoplasmic stress, made the fluorescently tagged xbp1 protein.

"Many researchers had bunched the stress response of the cytoplasmic and endoplasmic reticulum proteins together," says Steller. "Though we are not saying there couldn't be any cross-communication between these two pathways, I think our results show that the situation is considerably more complex than had been previously appreciated. The cell really knows where the stress is coming from, and whether the unfolded protein response is initiated in the endoplasmic reticulum or in the cytoplasm."

Using the tools that Ryoo developed, Steller hopes that more aspects of the unfolded protein response pathway can be illuminated. While they found that the unfolded protein response initially protects retinal cells from death in the fly model of ADRP, the cells eventually die, leading to blindness. How the cell death pathway becomes activated is still a mystery, and Steller makes the point that although blocking cell death is a worthwhile therapeutic strategy, blocking it globally is not. Scientists still need to understand the specific proteins involved to create the most effective therapy.

"When it comes to avoiding cancer or defense against virally infected cells, cell death is a good thing," says Steller. "But when cells are stressed, and as a result are dying too easily, blocking the pathways that lead to the activation of cell death would be an ideal way to fight disease. Using this new technique, we can now go step by step down the pathway, not only identifying proteins that are functionally relevant to cell death, but also finding which will make the most attractive targets for pharmacological development."

Source: Rockefeller University

Explore further: In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

Related Stories

In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

February 13, 2018
People who inherit a mutated version of the ATF6 gene are born with a malformed or missing fovea, the eye region responsible for sharp, detailed vision. From birth, their vision is severely limited, and there is no cure. ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

Protein associated with ALS points to possible targets for therapeutic intervention

December 1, 2017
Scientists at the University of Alberta may have found possible targets for therapeutic interventions in the fight against Lou Gehrig's disease.

Gene/cell connection provides new insight into how our gut microbiome stays healthy

January 10, 2018
Paneth cells are like an internal antibiotic that eliminates unwanted microbes that make their way into our small intestine and helps us maintain a healthy gut microbiome.

Scientists identify a key mechanism regulating a protein required for muscle and heart function

January 12, 2018
Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Columbia University in New York have discovered an important mechanism in the regulation of a protein that plays an essential role ...

Cancer overrides the circadian clock to survive

December 28, 2017
Tumor cells use the unfolded protein response to alter circadian rhythm, which contributes to more tumor growth, Hollings Cancer Center researchers at the Medical University of South Carolina (MUSC) find. A key part of the ...

Recommended for you

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.