Role of anesthetics in Alzheimer's disease: Molecular details revealed

January 25, 2007

Inhaled anesthetics commonly used in surgery are more likely to cause the aggregation of Alzheimer's disease-related plaques in the brain than intravenous anesthetics say University of Pittsburgh School of Medicine researchers in a journal article published in the Jan. 23 issue of Biochemistry. This is the first report using state-of-the-art nuclear magnetic resonance (NMR) spectroscopic technique to explain the detailed molecular mechanism behind the aggregation of amyloid â (Aâ) peptide due to various anesthetics.

Aâ plaques are found in the brains of people with Alzheimer's disease. Many believe that the uncontrolled clumping of Aâ is the cause of Alzheimer's disease and that the similar aggregation of peptides and proteins play a role in the development of other neurodegenerative diseases such as Parkinson's disease.

"Many people know of or have heard of an elderly person who went into surgery where they received anesthesia and when they woke up they had noticeable memory loss or cognitive dysfunction," said Pravat K. Mandal, Ph.D., assistant professor of psychiatry, University of Pittsburgh School of Medicine and lead author of the study. Previous studies by the Pittsburgh researchers found that the inhaled anesthetics halothane and isoflurane and the intravenous anesthetic propofol encouraged the growth and clumping of Aâ in a test tube experiment.

"Our prior research had shown in molecular models that anesthetics may play a role by causing amyloid peptides to clump together—something that is thought to signal the advancement of Alzheimer's disease. In this study, we set out to see why this was happening and to determine if any one form of anesthesia might be a safer option than another," said Dr. Mandal.

In this study the researchers used NMR spectroscopy to determine how the inhaled anesthetics halothane and isoflurane and the intravenous anesthetics propofol and thiopental interact with Aâ influencing the aggregation of Aâ in forms commonly found in the brains of people with Alzheimer's disease. The results were strikingly different between the inhaled and injected anesthetics. The inhaled halothane and isoflurane had the most potent interaction with Aâ peptides causing the highest levels of Aâ aggregation. The injected anesthetic propofol only interacted and caused aggregation at high concentrations—interaction was not evident at lower concentrations. The intravenous thiopental did not cause the clustering of Aâ peptides even at high concentrations. Additionally, the molecular details for the interaction of these anesthetics with Aâ peptide were revealed.

Dr. Mandal noted that if the same thing occurs in humans, anesthetics could lead to more amyloid plaques which may lead to earlier memory problems, warranting further studies of anesthetics with Aâ both in laboratory and clinical settings.

Source: University of Pittsburgh Medical Center

Explore further: Alzheimer's plaques disrupt brain networks

Related Stories

Alzheimer's plaques disrupt brain networks

April 20, 2012
Scientist studying the way Alzheimer's takes root in the brain have identified important new similarities between a mouse model and human Alzheimer's.

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.