Researchers Find Genes Involved in Nicotine Resistance in Fruit Flies

February 22, 2007

North Carolina State University researchers have gleaned insight into the genes involved in resistance to nicotine in the lab rat of many gene studies – Drosophila melanogaster, the fruit fly.

The research team led by Dr. Greg Gibson, William Neal Reynolds Professor of Genetics, and his graduate student, Gisele Passador-Gurgel, found that regulation of levels of a certain enzyme – ornithine amino transferase – plays an important role in establishing how long flies can tolerate nicotine. Gibson says that the amount of enzyme seems to do two things – it influences flies’ ability to strip away toxins, and it helps establish how much the drug stimulates them.

Working with Dr. Nigel Deighton, director of NC State’s new Metabolomics and Proteomics Laboratory on Centennial Campus, the group found evidence that the enzyme may act by affecting the levels of the neurotransmitters glutamate and GABA in the brain. One possibility, Gibson says, is that the inhibitory neurotransmitter GABA may negate the stimulatory effects of nicotine and help flies survive longer.

The paper describing the research is published in the February 2007 edition of Nature Genetics.

When exposed to nicotine, fruit flies get the quick, stimulatory buzz every cigarette smoker craves, but it’s all downhill after that. Nicotine is essentially lethal to flies; the flies in the study only lived from 10 to 60 hours after exposure to the drug. Unpublished work in the lab suggests that the flies actually become addicted to the very drug that will end up killing them. The researchers ruled out one possible explanation for this – that surviving flies are the ones that can digest the drug. Instead, they found a way to look at the targets of nicotine activity.

To do this, they introduced a concept they call quantitative trait transcript (QTT) mapping. NC State over the years has made major contributions to finding genes, or quantitative trait loci, that contribute to complex traits. This work suggests that similar strategies can be pursued by looking at the RNA instead of the DNA. RNA is a readout of the DNA code. “We propose that you can use gene expression profiling across a diverse set of individuals to find genes that are important for quantitative traits, or genetically complex traits which are regulated by a large number of genes,” Gibson says.

An interesting sidelight in the study was the observation that flies from North Carolina are more resistant to nicotine than flies from California. The researchers found that 30 percent of the North Carolina flies lived longer after exposure to nicotine – thus were more resistant to nicotine – than all but one California fly.

Gibson isn’t sure why, although he has a few theories. North Carolina flies may garner resistance from living near tobacco fields. California flies may have genetically lost their ability to resist nicotine. Many pesticides are nicotine-based, too, so the flies could have evolved some response to insecticides.

Gibson cautions against taking the information learned from flies and applying it to humans and nicotine because “Drosophila and people are a bit different, although there are intriguing similarities,” he said. One intriguing set of genes they found also seems to be activated in the lungs of human smokers, for example.

More importantly, he says, the QTT approach can be viewed as a way forward in the quest to provide “personalized” medicine; that is, providing drugs to people based on specific knowledge of their particular genomic identity.

Citation: “Quantitative Trait Transcripts for Nicotine Resistance in Drosophila Melanogaster”, Gisele Passador-Gurgel, Priscilla Hunt, Nigel Deighton and Greg Gibson, North Carolina State University; Wen-Ping Hsieh, National Tsing Hua University, Taiwan
Published: February 2007 in Nature Genetics

Source: North Carolina State University

Related Stories

Recommended for you

New methods find undiagnosed genetic diseases in electronic health records

March 15, 2018
Patients diagnosed with heart failure, stroke, infertility and kidney failure could actually be suffering from rare and undiagnosed genetic diseases.

Hundreds of genes linked to intelligence in global study

March 14, 2018
More than 500 genes linked to intelligence have been identified in the largest study of its kind. Scientists compared variation in DNA in more than 240,000 people from around the world, to discover which genes are associated ...

Study finds that genes play a role in empathy

March 12, 2018
A new study published today suggests that how empathic we are is not just a result of our upbringing and experience but also partly a result of our genes.

Large-scale genetic study provides new insight into the causes of stroke

March 12, 2018
An international research consortium studying 520,000 individuals from around the world has identified 22 new genetic risk factors for stroke, thus tripling the number of gene regions known to affect stroke risk. The results ...

Study suggests some CpGs in the genome can be hemimethylated by design

March 9, 2018
A pair of researchers at Emory University has found that some CpGs in the genome can be hemimethylated by design, rather than by chance. In their paper published in the journal Science, Chenhuan Xu and Victor Corces describe ...

Intravenous arginine benefits children after acute metabolic strokes

March 9, 2018
Children with mitochondrial diseases who suffered acute metabolic strokes benefited from rapid intravenous treatment with the amino acid arginine, experiencing no side effects from the treatment. The diseases were caused ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.