Robotic exoskeleton replaces muscle work

February 8, 2007

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

The ankle exoskeleton developed at U-M was worn by healthy subjects to measure how the device affected ankle function. The U-M team has no plans to build a commercial exoskeleton, but their results suggest promising applications for rehabilitation and physical therapy, and a similar approach could be used by other groups who do build such technology.

"This could benefit stroke patients or patients with incomplete injuries of the spinal cord," said Daniel Ferris, associate professor in movement science at U-M. "For patients that can walk slowly, a brace like this may help them walk faster and more effectively."

Ferris and former U-M doctoral student Keith Gordon, who is now a post-doctoral fellow at the Rehabilitation Institute of Chicago, showed that the wearer of the U-M ankle exoskeleton could learn how to walk with the exoskeleton in about 30 minutes. Additionally, the wearer's nervous system retained the ability to control the exoskeleton three days later.

Electrical signals sent by the brain to our muscles tell them how to move. In people with spinal injuries or some neurological disorders, those electrical signals don't arrive full strength and are uncoordinated. In addition, patients are less able to keep track of exactly where and how their muscles move, which makes re-learning movement difficult.

Typically, robotic rehabilitative devices are worn by patients so that the limb is moved by the brace, which receives its instructions from a computer. Such devices use repetition to help force a movement pattern.

The U-M robotic exoskeleton works the opposite of these rehabilitation aids. In the U-M device, electrodes were attached to the wearer's leg and those electrical signals received from the brain were translated into movement by the exoskeleton.

"The (artificial) muscles are pneumatic. When the computer gets the electrical signal from the (wearer's) muscle, it increases the air pressure into the artificial muscle on the brace," Ferris said. "Essentially the artificial muscle contracts with the person's muscle."

Initially the wearer's gait was disrupted because the mechanical power added by the exoskeleton made the muscle stronger. However, in a relatively short time, the wearers adapted to the new strength and used their muscles less because the exoskeleton was doing more of the work. Their gait normalized after about 30 minutes.

The next step is to test the device on patients with impaired muscle function, Ferris said.

Source: University of Michigan

Explore further: Moving exoskeletons from sci-fi into medical rehabilitation and therapy

Related Stories

Moving exoskeletons from sci-fi into medical rehabilitation and therapy

July 14, 2016
Chances are, you've seen a person using a powered exoskeleton – what you might think of as a sort of bionic suit – but only in the movies. In the 2013 movie "Elysium," for example, Matt Damon's character has an exoskeleton ...

An exoskeleton of advanced design promises a new degree of independence for people with paraplegia (w/ Video)

October 30, 2012
The dream of regaining the ability to stand up and walk has come closer to reality for people paralyzed below the waist who thought they would never take another step.

Robotics exoskeleton for shoulder rehabilitation

January 20, 2016
A team from the Centre for Automation and Robotics (CAR, UPM-CSIC) has developed a robotic exoskeleton for efficient rehabilitation therapies for patients with shoulder injuries. By using strength and motion sensors, the ...

Building block for exoskeleton could lead to more independence among the elderly (w/ Video)

November 12, 2013
What if certain patients could get a bionic pick-up without undergoing the pain and lengthy recovery of surgery? University of Cincinnati researchers are working on just that idea, with the start of an exoskeleton to support ...

Preliminary research findings released for Ekso robotic exoskeleton in spinal cord injury

September 5, 2012
Kessler Foundation has released preliminary research findings from its clinical study of the wearable robotic exoskeletal device, Ekso (Ekso Bionics). Gail Forrest, PhD, assistant director of Human Performance and Engineering ...

First child exoskeleton for spinal muscular atrophy

June 9, 2016
Researchers have introduced the world's first infant exoskeleton designed to help children with spinal muscular atrophy, a degenerative illness. Weighing 12 kilos, the apparatus is made of aluminium and titanium, and is designed ...

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.