Researchers safely regenerate failing mouse hearts with programmed embryonic stem cells

February 27, 2007

Mayo Clinic researchers have safely transplanted cardiac preprogrammed embryonic stem cells into diseased hearts of mice successfully regenerating infarcted heart muscle without precipitating the growth of a cancerous tumor -- which, so far, has impeded successful translation into practice of embryonic stem cell research.

The Mayo study is the first known report establishing a successful, tumor-resistant approach to growing new heart tissue from an embryonic stem cell source. The study is published in the February issue of the Journal of Experimental Medicine.

Embryonic stem cells have the potential to become any cell type in the body. But directing the stem cells to regenerate targeted tissue is a process that hasn’t yet been perfected. Scientists continue to closely scrutinize stem cell strategies to establish even safer and more effective treatments for disease.

“Embryonic stem cells are like a stealth fighter jet that flies virtually undetectable by radar,” says the study’s first author, Atta Behfar, M.D., Ph.D., a clinician-investigator fellow in the Mayo Graduate School of Medicine. “The host body doesn’t recognize embryonic stem cells, which it allows to multiply freely in an unimpeded fashion.”

The Mayo study is the first known report of a successful strategy for programming embryonic stem cells to suppress cancer genes, to mature into heart cells (also known as cardiomyocytes) and to successfully fix injured hearts without causing tumors to develop. The study removes a critical obstacle towards translation of regenerative technology into developing new therapies for people with heart disease.

“Embryonic stem cells have an unequaled potential for repair, yet it has been uncertain whether we can drive them to safely regenerate the tissue we would like to replace,” says Andre Terzic, M.D., Ph.D., a stem cell specialist and lead investigator of the study. “Our objective was to repair heart muscle by avoiding the limitations intrinsic to embryonic stem cells, i.e., potential tumor growth.

“In this study, we have successfully programmed embryonic stem cells to safely generate new cardiac muscle tissue, leading potentially to new therapy,” Dr. Terzic says.

The Study

Researchers transplanted mouse embryonic stem cells into infarcted hearts of mice. Consistent with the risk for uncontrolled growth, a significant number of recipient mouse hearts developed tumors. To avoid tumor formation, researchers secured guided differentiation of stem cells to produce cardiopoietic cells, or cardiac specified cell precursors rather than any cell type. Treatment with cardiopoietic cells proved to have no tendency to develop into cancer. Tumor-free heart repair occurred in all treated mice. Two months after cardiopoietic stem cell transplantation, scientists reported a 35 percent improved output in treated hearts.

The threat of tumor growth associated with embryonic stem cell transplants was eliminated by restricting expression of oncogenes and pluripotency genes through transgenic manipulation of tumor necrosis factor alpha (TNFa), a genome reprogramming protein. Researchers found that over-expressed TNFa promoted guided control of cardiac embryonic stem cells to drive the cardiogenesis process.

Researchers discovered approximately 15 proteins whose production was dramatically increased after TNFa stimulation. These proteins, when combined into a “cocktail,” secured guided differentiation of embryonic stem cells, producing cardiac progenitors called cardiopoietic cells. Such guided heart precursor cells did not form tumors, even though they were transplanted at doses that would otherwise carry a high risk for tumorigenesis with embryonic stem cells.

“Our goal is to apply these findings to adult stem cells, and in our next step create the first human cardioprogenitor stem cells as a tool for therapies in the future,” Dr. Terzic says.

Source: Mayo Clinic

Explore further: New insight into how brain cells die in Alzheimer's disease and frontotemporal dementia

Related Stories

New insight into how brain cells die in Alzheimer's disease and frontotemporal dementia

October 9, 2017
Removal of a regulatory gene called LSD1 in adult mice induces changes in gene activity that that look unexpectedly like Alzheimer's disease, scientists have discovered.

Novel treatment causes cancer to self-destruct without affecting healthy cells

October 9, 2017
Scientists at Albert Einstein College of Medicine have discovered the first compound that directly makes cancer cells commit suicide while sparing healthy cells. The new treatment approach, described in today's issue of Cancer ...

Umbilical cord stem cells show promise as heart failure treatment

September 26, 2017
A heart failure treatment using umbilical cord-derived stem cells may lead to notable improvements in heart muscle function and quality of life, according to a new study published in Circulation Research, an American Heart ...

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Production of key diabetes cells can be improved

September 21, 2017
Beta cells release insulin in your blood, but when you suffer from Type 1 diabetes, you hardly have any of them left in your body. This is because the immune system attacks the beta cells.

Recommended for you

Study shows stress could be just as unhealthy as junk food

October 16, 2017
We all know that a poor diet is unhealthy, but a new BYU study finds that stress may just as harmful to our bodies as a really bad diet.

Childhood poverty, poor support may drive up pregnant woman's biological age

October 16, 2017
Pregnant women who had low socioeconomic status during childhood and who have poor family social support appear to prematurely age on a cellular level, potentially raising the risk for complications, a new study has found.

Blood vessel 'master gene' discovery could lead to treatments for liver disease

October 16, 2017
Scientists have identified a key gene in blood vessels which could provide a new way to assess and potentially treat liver disease.

Chronic inflammation plays critical role in sustained delivery of new muscular dystrophy therapy

October 16, 2017
Macrophages, a type of white blood cell involved in inflammation, readily take up a newly approved medication for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after ...

New study demonstrates importance of studying sleep and eating in tandem

October 13, 2017
A new study from scientists on the Florida campus of The Scripps Research Institute (TSRI) offers important insights into possible links between sleep and hunger—and the benefits of studying the two in tandem. A related ...

'Ridiculously healthy' elderly have the same gut microbiome as healthy 30 year-olds

October 11, 2017
In one of the largest microbiota studies conducted in humans, researchers at Western University, Lawson Health Research Institute and Tianyi Health Science Institute in Zhenjiang, Jiangsu, China have shown a potential link ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.