U-M team: Genetic testing sheds light on degenerative eye disease

February 14, 2007

Genetic testing for eye disease is providing vital information about complex retinal diseases, especially when used to confirm a clinician’s diagnosis.

In a newly published review of such tests that were conducted over a five-year period at the University of Michigan Kellogg Eye Center, scientists were able to confirm a clinician’s diagnosis in half of the cases. The testing took place in the laboratory of Radha Ayyagari, Ph.D., director of Kellogg’s Ophthalmic Molecular Diagnostic Laboratory.

In the February issue of Archives of Ophthalmology, Ayyagari and her colleagues report on 350 genetic tests conducted since 1999, when the U-M Ophthalmic Molecular Diagnostic Laboratory became one of the first laboratories in the nation to receive government approval for ophthalmic testing under the Clinical Laboratory Improvement Amendment (CLIA). For each test described in the current study, scientists analyzed one or more of eight genes known to cause diseases of the retina.

Of the 350 tests, 266 were performed to confirm a clinician’s diagnosis, by far the most common use of genetic testing for eye disease. Another 75 tests sought to determine whether an individual was a “carrier” of a disease, and nine tests were used to predict the likelihood that an individual with a family history of a given eye disease would go on to develop it.

Ayyagari’s team was able to determine the molecular basis of the disease in half of 266 tests conducted to confirm a diagnosis. These results are significant because many retinal diseases present similar symptoms, and it is sometimes difficult for even the most skilled specialist to distinguish one from the other. By comparing a patient’s DNA to known disease-causing genes, scientists deliver information needed to confirm or rule out a diagnosis. To date, scientists have identified over 130 genes associated with retinal disease, such as retinitis pigmentosa and macular degeneration.

The authors observe that genetic testing for eye disease is a relatively new and evolving practice. Says Ayyagari, “Molecular diagnostics does not replace the necessary expertise of the ophthalmologist; rather, it adds a new tool to the ophthalmologist’s diagnostic arsenal.”

The report describes one case in which parents with no family history of retinal degeneration requested genetic testing in hopes of revealing the specific nature of their son’s eye disease. They also wanted to know whether the younger son, who was experiencing more subtle symptoms, had the same disease or a milder vision problem due to a different disease. Testing revealed that both boys had two gene mutations linked to Stargardt’s macular degeneration, a blinding disease that begins in childhood.

Genetic counseling is a crucial part of the genetic testing process, particularly when the patient may face the possibility of blindness, says Ayyagari. The family needs to prepare for all possible test results, understand the implications of test results for the patient and other family members, and be aware of the limitations of genetic testing. If physicians do not have the time or skills to provide this background, Ayyagari urges them to refer their patients to genetic counselors.

The study also reported that a diagnosis could not be confirmed in 133 cases, or half the tests conducted to confirm a diagnosis. “It is very difficult for patients to understand that the test may not be definitive,” says Ayyagari. “Genetic testing may not always yield the firm facts we receive in other kinds of testing, such as blood tests for cholesterol levels.”

A related point of confusion is that an inconclusive result does not necessarily rule out a diagnosis for a given disease. Limitations still exist in technologies for genetic testing, explains Ayyagari. In addition, very slight genetic variations believed to be benign may have either a cumulative effect or may alter the way another gene functions. Finally, while there has been great progress, scientists have yet to identify all the genes that contribute to disease of the retina.

“Tomorrow we may discover a new gene that explains many of the previously inconclusive test reports,” says Ayyagari.

In a related paper in the same issue of Archives of Ophthalmology, Stephen Daiger, Ph.D., University of Texas Health Science Center, writes on the promise of genetic testing for eye disease. He says, “Across all of the categories of inherited retinopathy, careful screening of known disease genes leads to detection of pathogenic mutations in 25% to 90% of patients, an extraordinary accomplishment.”

It is to the patient’s advantage to have a molecular diagnosis on file, observes Ayyagari. “When treatments begin to emerge for these complex genetic diseases,” she says, “the individual’s genotype may determine whether a new treatment will be the one that works for that patient.”

Source: University of Michigan Health System

Explore further: New software helps detect adaptive genetic mutations

Related Stories

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

Blood and urine tests developed to indicate autism in children

February 19, 2018
New tests which can indicate autism in children have been developed by researchers at the University of Warwick.

First multiplex test for tick-borne diseases

February 16, 2018
A new blood test called the Tick-Borne Disease Serochip (TBD Serochip) promises to revolutionize the diagnosis of tick-borne disease by offering a single test to identify and distinguish between Borrelia burgdorferi, the ...

Recommended for you

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.