U-M team: Genetic testing sheds light on degenerative eye disease

February 14, 2007

Genetic testing for eye disease is providing vital information about complex retinal diseases, especially when used to confirm a clinician’s diagnosis.

In a newly published review of such tests that were conducted over a five-year period at the University of Michigan Kellogg Eye Center, scientists were able to confirm a clinician’s diagnosis in half of the cases. The testing took place in the laboratory of Radha Ayyagari, Ph.D., director of Kellogg’s Ophthalmic Molecular Diagnostic Laboratory.

In the February issue of Archives of Ophthalmology, Ayyagari and her colleagues report on 350 genetic tests conducted since 1999, when the U-M Ophthalmic Molecular Diagnostic Laboratory became one of the first laboratories in the nation to receive government approval for ophthalmic testing under the Clinical Laboratory Improvement Amendment (CLIA). For each test described in the current study, scientists analyzed one or more of eight genes known to cause diseases of the retina.

Of the 350 tests, 266 were performed to confirm a clinician’s diagnosis, by far the most common use of genetic testing for eye disease. Another 75 tests sought to determine whether an individual was a “carrier” of a disease, and nine tests were used to predict the likelihood that an individual with a family history of a given eye disease would go on to develop it.

Ayyagari’s team was able to determine the molecular basis of the disease in half of 266 tests conducted to confirm a diagnosis. These results are significant because many retinal diseases present similar symptoms, and it is sometimes difficult for even the most skilled specialist to distinguish one from the other. By comparing a patient’s DNA to known disease-causing genes, scientists deliver information needed to confirm or rule out a diagnosis. To date, scientists have identified over 130 genes associated with retinal disease, such as retinitis pigmentosa and macular degeneration.

The authors observe that genetic testing for eye disease is a relatively new and evolving practice. Says Ayyagari, “Molecular diagnostics does not replace the necessary expertise of the ophthalmologist; rather, it adds a new tool to the ophthalmologist’s diagnostic arsenal.”

The report describes one case in which parents with no family history of retinal degeneration requested genetic testing in hopes of revealing the specific nature of their son’s eye disease. They also wanted to know whether the younger son, who was experiencing more subtle symptoms, had the same disease or a milder vision problem due to a different disease. Testing revealed that both boys had two gene mutations linked to Stargardt’s macular degeneration, a blinding disease that begins in childhood.

Genetic counseling is a crucial part of the genetic testing process, particularly when the patient may face the possibility of blindness, says Ayyagari. The family needs to prepare for all possible test results, understand the implications of test results for the patient and other family members, and be aware of the limitations of genetic testing. If physicians do not have the time or skills to provide this background, Ayyagari urges them to refer their patients to genetic counselors.

The study also reported that a diagnosis could not be confirmed in 133 cases, or half the tests conducted to confirm a diagnosis. “It is very difficult for patients to understand that the test may not be definitive,” says Ayyagari. “Genetic testing may not always yield the firm facts we receive in other kinds of testing, such as blood tests for cholesterol levels.”

A related point of confusion is that an inconclusive result does not necessarily rule out a diagnosis for a given disease. Limitations still exist in technologies for genetic testing, explains Ayyagari. In addition, very slight genetic variations believed to be benign may have either a cumulative effect or may alter the way another gene functions. Finally, while there has been great progress, scientists have yet to identify all the genes that contribute to disease of the retina.

“Tomorrow we may discover a new gene that explains many of the previously inconclusive test reports,” says Ayyagari.

In a related paper in the same issue of Archives of Ophthalmology, Stephen Daiger, Ph.D., University of Texas Health Science Center, writes on the promise of genetic testing for eye disease. He says, “Across all of the categories of inherited retinopathy, careful screening of known disease genes leads to detection of pathogenic mutations in 25% to 90% of patients, an extraordinary accomplishment.”

It is to the patient’s advantage to have a molecular diagnosis on file, observes Ayyagari. “When treatments begin to emerge for these complex genetic diseases,” she says, “the individual’s genotype may determine whether a new treatment will be the one that works for that patient.”

Source: University of Michigan Health System

Explore further: Ovarian cancer genetics unravelled

Related Stories

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

'Alarming' diabetes epidemic in Guatemala tied to aging, not obesity

August 14, 2018
The diabetes epidemic in Guatemala is worse than previously thought: more than 25 percent of its indigenous people, who make up 60 percent of the population, suffer from type 2 diabetes or pre-diabetes, suggests a new study ...

Doctors may be able to enlist a mysterious enzyme to stop internal bleeding

August 14, 2018
Blood platelets are like the sand bags of the body. Got a cut? Platelets pile in to clog the hole and stop the bleeding.

Genetic tools uncover cause of childhood seizure disorder missed by other methods

August 13, 2018
Early childhood seizures result from a rare disease that begin in the first months of life. Researchers at University of Utah Health have developed high-tech tools to uncover the genetic cause of the most difficult to diagnose ...

Researchers predict risk for common deadly diseases from millions of genetic variants

August 13, 2018
A research team at the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and Harvard Medical School reports a new kind of genome analysis that could identify large fractions of the population who have ...

Broad genetic testing for advanced lung cancer may not improve survival

August 8, 2018
Testing for dozens of genetic mutations in tumors of patients with a common form of advanced lung cancer did not appear to improve survival compared to routine genetic testing, a study led by Yale Cancer Center (YCC) scientists ...

Recommended for you

New imaging technique can spot tuberculosis infection in an hour

August 16, 2018
Guided by glowing bacteria, researchers have devised an imaging technique that can diagnose live tuberculosis in an hour and help monitor the efficacy of treatments. That's particularly critical because many TB strains have ...

Obesity, infertility and oxidative stress in mouse egg cells

August 16, 2018
Excessive body fat is associated with negative effects on female fertility and pregnancy. In mice, maternal obesity impairs proper development of egg precursor cells called oocytes. In a recent paper published in Molecular ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

Byproducts of 'junk DNA' implicated in cancer spread

August 14, 2018
The more scientists explore so-called "junk" DNA, the less the label seems to fit.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.