U-M team: Genetic testing sheds light on degenerative eye disease

February 14, 2007

Genetic testing for eye disease is providing vital information about complex retinal diseases, especially when used to confirm a clinician’s diagnosis.

In a newly published review of such tests that were conducted over a five-year period at the University of Michigan Kellogg Eye Center, scientists were able to confirm a clinician’s diagnosis in half of the cases. The testing took place in the laboratory of Radha Ayyagari, Ph.D., director of Kellogg’s Ophthalmic Molecular Diagnostic Laboratory.

In the February issue of Archives of Ophthalmology, Ayyagari and her colleagues report on 350 genetic tests conducted since 1999, when the U-M Ophthalmic Molecular Diagnostic Laboratory became one of the first laboratories in the nation to receive government approval for ophthalmic testing under the Clinical Laboratory Improvement Amendment (CLIA). For each test described in the current study, scientists analyzed one or more of eight genes known to cause diseases of the retina.

Of the 350 tests, 266 were performed to confirm a clinician’s diagnosis, by far the most common use of genetic testing for eye disease. Another 75 tests sought to determine whether an individual was a “carrier” of a disease, and nine tests were used to predict the likelihood that an individual with a family history of a given eye disease would go on to develop it.

Ayyagari’s team was able to determine the molecular basis of the disease in half of 266 tests conducted to confirm a diagnosis. These results are significant because many retinal diseases present similar symptoms, and it is sometimes difficult for even the most skilled specialist to distinguish one from the other. By comparing a patient’s DNA to known disease-causing genes, scientists deliver information needed to confirm or rule out a diagnosis. To date, scientists have identified over 130 genes associated with retinal disease, such as retinitis pigmentosa and macular degeneration.

The authors observe that genetic testing for eye disease is a relatively new and evolving practice. Says Ayyagari, “Molecular diagnostics does not replace the necessary expertise of the ophthalmologist; rather, it adds a new tool to the ophthalmologist’s diagnostic arsenal.”

The report describes one case in which parents with no family history of retinal degeneration requested genetic testing in hopes of revealing the specific nature of their son’s eye disease. They also wanted to know whether the younger son, who was experiencing more subtle symptoms, had the same disease or a milder vision problem due to a different disease. Testing revealed that both boys had two gene mutations linked to Stargardt’s macular degeneration, a blinding disease that begins in childhood.

Genetic counseling is a crucial part of the genetic testing process, particularly when the patient may face the possibility of blindness, says Ayyagari. The family needs to prepare for all possible test results, understand the implications of test results for the patient and other family members, and be aware of the limitations of genetic testing. If physicians do not have the time or skills to provide this background, Ayyagari urges them to refer their patients to genetic counselors.

The study also reported that a diagnosis could not be confirmed in 133 cases, or half the tests conducted to confirm a diagnosis. “It is very difficult for patients to understand that the test may not be definitive,” says Ayyagari. “Genetic testing may not always yield the firm facts we receive in other kinds of testing, such as blood tests for cholesterol levels.”

A related point of confusion is that an inconclusive result does not necessarily rule out a diagnosis for a given disease. Limitations still exist in technologies for genetic testing, explains Ayyagari. In addition, very slight genetic variations believed to be benign may have either a cumulative effect or may alter the way another gene functions. Finally, while there has been great progress, scientists have yet to identify all the genes that contribute to disease of the retina.

“Tomorrow we may discover a new gene that explains many of the previously inconclusive test reports,” says Ayyagari.

In a related paper in the same issue of Archives of Ophthalmology, Stephen Daiger, Ph.D., University of Texas Health Science Center, writes on the promise of genetic testing for eye disease. He says, “Across all of the categories of inherited retinopathy, careful screening of known disease genes leads to detection of pathogenic mutations in 25% to 90% of patients, an extraordinary accomplishment.”

It is to the patient’s advantage to have a molecular diagnosis on file, observes Ayyagari. “When treatments begin to emerge for these complex genetic diseases,” she says, “the individual’s genotype may determine whether a new treatment will be the one that works for that patient.”

Source: University of Michigan Health System

Explore further: Scientists propose novel therapy to lessen risk of obesity-linked disease

Related Stories

Scientists propose novel therapy to lessen risk of obesity-linked disease

July 24, 2017
With obesity related illnesses a global pandemic, researchers propose in the Journal of Clinical Investigation using a blood thinner to target molecular drivers of chronic metabolic inflammation in people eating high-fat ...

Charlie Gard parents drop legal fight, agree to let him die

July 24, 2017
The parents of Charlie Gard, whose battle to get their critically ill baby experimental treatment stirred international sympathy and controversy, dropped their legal effort Monday, saying tearfully that it was time to let ...

Chances to treat childhood dementia

July 24, 2017
Although dementia is most often seen in adults, childhood or adolescent dementia does occur. A team of researchers from the University of Würzburg believes that established therapeutic drugs might be effective against childhood ...

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

The uncertain future of genetic testing

July 18, 2017
AnneMarie Ciccarella, a fast-talking 57-year-old brunette with a more than a hint of a New York accent, thought she knew a lot about breast cancer. Her mother was diagnosed with the disease in 1987, and several other female ...

Exome sequencing unravels rare disease mysteries

July 19, 2017
When Audrey Lapidus' 10-month old son, Calvin, didn't reach normal milestones like rolling over or crawling, she knew something was wrong.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.