Blood's clotting cells harbor 'ticking time bombs'

March 22, 2007

Fragments of cells in the blood known as platelets—which form blood clots and assist in wound healing—have internal “clocks” that act like ticking time bombs, predetermining their death from the moment they are born, according to a new study in the March 23 issue of the journal Cell, published by Cell Press.

The researchers said that the findings could have “profound implications” for the diagnosis and treatment of platelet disorders. Perhaps even more importantly, they said the discovery suggests that chemical treatments that effectively set those clocks back might increase the shelf life of donated blood platelets, which expire after just five days under the storage conditions now required.

The researchers discovered that platelets’ characteristically short life span, which for humans is 10 days, is set by the amount of a prosurvival protein they contain. As that protein dwindles, its cellular “nemesis” takes over, causing the specialized clotting cells to commit a programmed form of suicide called apoptosis.

“We found that platelets undergo really classical apoptosis,” said David Huang of The Walter and Eliza Hall Institute of Medical Research in Australia. “It’s surprising in many ways because platelets are an unusual cell type that lacks a nucleus. We didn’t know what was controlling their life span.” Cell nuclei contain the genetic instructions that ultimately direct the activities of other kinds of cells.

“The finding has a whole list of potential implications,” added study collaborator Benjamin Kile, also of The Walter and Eliza Hall Institute of Medical Research. “For us, probably the most important is the possibility for extending platelet life span in blood banks.” Such an extension might be achieved by increasing levels of the prosurvival protein, called Bcl-xL, or by blocking its rival death protein, Bak.

“If the platelet storage time could be extended from five to eight or 10 days, it would make a lot of difference for clinical and blood banking practice,” Huang said.

In the United States alone, approximately 12 million units of platelets are transfused each year, primarily in patients undergoing treatment for cancer, the researchers said. Patients who are administered chemotherapy drugs often require platelet support to reduce their risk of bleeding. That’s because the constituents of bone marrow that produce the clotting cells are “severely affected” by the cancer-fighting agents, Huang explained.

For reasons that aren’t yet entirely clear, donated platelets must be stored at room temperatures, the researchers said. When kept under colder conditions, transfused platelets are recognized as foreign by a recipient’s immune system and quickly cleared from the bloodstream.

“The problem at room temperature is that biological processes occur quickly, leading to a rapid decline in viability,” Kile said. That decline, in addition to problems with bacterial contamination, has precluded platelet’s storage for more than five days.

In search of genes that influence platelet number in the current study, the researchers first screened mice exposed to a mutagenic chemical for low platelet counts. Their search uncovered two such mouse strains, each bearing different mutations in Bcl-xL. Mice specifically engineered to lack Bcl-xL also were deficient in platelets, they showed.

“It was an unexpected result, and the seed for the whole story,” Kile said of the initial discovery.

The researchers at first suspected the problem in the Bcl-xL-deficient animals might stem from a defect in the production of platelets in the bone marrow. When that theory failed to pan out, they were initially “left scratching their heads,” Kile said.

They then realized that Bcl-xL might serve to keep platelets alive, just as it does in other cells. Indeed, they found evidence in mice that prosurvival Bcl-xL constrains the activity of suicide-inducing Bak to maintain platelet survival. As Bcl-xL degrades, older platelets are primed for cell death.

Genetic or drug treatments that blocked Bcl-xL reduced platelets’ life span and caused mice to become platelet deficient, they found. Eliminating Bak corrected those defects, and platelets from Bak-deficient mice lived longer than normal, they reported.

The drug used by the researchers was a “BH3 mimetic,” a class of anticancer therapy that is now under development, Huang explained. The drugs work by targeting Bcl-xL and related prosurvival genes in tumor cells.

Bcl-xL’s newfound role reveals that the new cancer drugs will likely lead to a decline in platelet numbers. However, the researchers added, “the side effect is likely to be self-limiting as normal bone marrow has the capacity to compensate by increased platelet production.”

In addition to the new platelet discovery’s possible practical applications, the findings also have intriguing biological implications.

“It suggests at the molecular level that cells are really programmed to die by default within a given period of time unless another signal overrides it,” Huang said.

“All cells may have such a clock,” he continued. “However, in most cells that clock may be rewired and modified by the manufacture of proteins. Their clocks could, in essence, be rewound.”

In contrast, he said platelets’ lack of a nucleus leaves them without a mechanism for turning back the clock. It will be interesting to see if a similar clock fixes the life span of red blood cells—the oxygen carriers of the bloodstream—which also lack a nucleus, the researchers said.

Source: Cell Press

Explore further: The HLF-gene controls the generation of our long-term immune system

Related Stories

The HLF-gene controls the generation of our long-term immune system

November 22, 2017
A research group at Lund University in Sweden has found that when the HLF (hepatic leukemia factor) gene –which is expressed in immature blood cells – does not shut down on time, we are unable to develop a functional ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Video of blood clot contraction reveals how platelets naturally form unobtrusive clots

November 8, 2017
The first view of the physical mechanism of how a blood clot contracts at the level of individual platelets is giving researchers from the Perelman School of Medicine at the University of Pennsylvania a new look at a natural ...

Aerobics may benefit platelet reactivity in menopausal women

October 24, 2017
(HealthDay)—Regular aerobic exercise may improve regulation of platelet reactivity, providing a cardioprotective effect, in pre- and postmenopausal women, according to a small study published online Oct. 12 in the Journal ...

How and why blood clots shrink

November 9, 2017
Blood clotting is the "Jekyll and Hyde" of biological processes. It's a lifesaver when you're bleeding, but gone awry, it causes heart attacks, strokes and other serious medical problems. If a clot grows too big, pieces dislodged ...

Recommended for you

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.