For Easy Tasks, Brain Preps and Decides Together

March 6, 2007
For Easy Tasks, Brain Preps and Decides Together
A brain scan illustrates areas that became active when the subject was presented with a stimulus. In this study, those same areas also became active when the subject was cued to the task, indicating that the same areas of the brain that respond to stimulus also contribute to preparation. Credit: Eric Schumacher/Georgia Tech

A Georgia Tech researcher has discovered that for tasks involving spatial processing, preparing for the task and performing it are not two separate brain processes, but one – at least when there are a small number of actions to choose from. The research appears online in the journal Brain Research.

In a brain imaging study using functional magnetic resonance imaging (fMRI), Eric Schumacher, assistant professor of psychology at the Georgia Institute of Technology, along with colleagues from the University of Pittsburgh and the University of California, Berkeley, monitored the activity of brain regions in subjects while they responded to visual stimuli.

The researchers predicted that when they gave the subjects a cue that they were about to perform a hard task, only the superior parietal cortex, known for its involvement in spatial attention, and the premotor cortex, known for planning movements, would activate. Then, the prefrontal cortex, known for its role in decision-making, would activate after the stimulus was presented. But they were wrong.

"We found that all of these regions began to activate when the subjects prepared to do the task, even the prefrontal, which is the region that makes the decision on what to do," said Schumacher. "Activating the decision-making region even before the stimulus is presented seems to allow for a quicker response, it allows the brain to get a running start."

Subjects were loaded into an MRI scanner and then shown a disk on a screen prompting them to press a button. They had two different tasks to perform, one labeled easy, and one hard. During the easy task, subjects were asked to push a button using the fingers of their left hand if the disk appeared on the left of the screen and their right hand if the disk appeared on the right. The hard task was manually incompatible, so that if the disk appeared on the left, they were to push the buttons using their right hand and vice-versa. Sometimes a visual cue prompted them that they were about to perform the hard or the easy task, sometimes it did not.

When the tasks were cued, all three regions of the brain increased their activity. When there was no cue, there was less activity.

So what does this mean in the real world?

"One analogous situation might be when you're driving and coming up on an intersection where there is a stale green light. You may get ready for the light to change to yellow and then red. My research suggests that this preparation for the upcoming change and appropriate responses involves the same brain regions that are involved in actually pressing the brake (or gas) once the light turns red or yellow," said Schumacher.

Source: Georgia Institute of Technology

Explore further: The brain mechanism behind multitasking

Related Stories

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Simple tasks don't test brain's true complexity

June 8, 2017

The human brain naturally makes its best guess when making a decision, and studying those guesses can be very revealing about the brain's inner workings. But neuroscientists at Rice University and Baylor College of Medicine ...

New insights into how the human brain processes scent

June 6, 2017

Theta oscillations, a type of rhythmic electrical activity that waxes and wanes four to eight times per second, may play a fundamental role in processing scent in the human brain, according to a new study recently published ...

Recommended for you

Lab grown human colons change study of GI disease

June 22, 2017

Scientists used human pluripotent stem cells to generate human embryonic colons in a laboratory that function much like natural human tissues when transplanted into mice, according to research published June 22 in Cell Stem ...

Paracetamol during pregnancy can inhibit masculinity

June 22, 2017

Paracetamol is popular for relieving pain. But if you are pregnant, you should think twice before popping these pills according to the researchers in a new study. In an animal model, Paracetamol, which is the pain-relieving ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.