For Easy Tasks, Brain Preps and Decides Together

March 6, 2007
For Easy Tasks, Brain Preps and Decides Together
A brain scan illustrates areas that became active when the subject was presented with a stimulus. In this study, those same areas also became active when the subject was cued to the task, indicating that the same areas of the brain that respond to stimulus also contribute to preparation. Credit: Eric Schumacher/Georgia Tech

A Georgia Tech researcher has discovered that for tasks involving spatial processing, preparing for the task and performing it are not two separate brain processes, but one – at least when there are a small number of actions to choose from. The research appears online in the journal Brain Research.

In a brain imaging study using functional magnetic resonance imaging (fMRI), Eric Schumacher, assistant professor of psychology at the Georgia Institute of Technology, along with colleagues from the University of Pittsburgh and the University of California, Berkeley, monitored the activity of brain regions in subjects while they responded to visual stimuli.

The researchers predicted that when they gave the subjects a cue that they were about to perform a hard task, only the superior parietal cortex, known for its involvement in spatial attention, and the premotor cortex, known for planning movements, would activate. Then, the prefrontal cortex, known for its role in decision-making, would activate after the stimulus was presented. But they were wrong.

"We found that all of these regions began to activate when the subjects prepared to do the task, even the prefrontal, which is the region that makes the decision on what to do," said Schumacher. "Activating the decision-making region even before the stimulus is presented seems to allow for a quicker response, it allows the brain to get a running start."

Subjects were loaded into an MRI scanner and then shown a disk on a screen prompting them to press a button. They had two different tasks to perform, one labeled easy, and one hard. During the easy task, subjects were asked to push a button using the fingers of their left hand if the disk appeared on the left of the screen and their right hand if the disk appeared on the right. The hard task was manually incompatible, so that if the disk appeared on the left, they were to push the buttons using their right hand and vice-versa. Sometimes a visual cue prompted them that they were about to perform the hard or the easy task, sometimes it did not.

When the tasks were cued, all three regions of the brain increased their activity. When there was no cue, there was less activity.

So what does this mean in the real world?

"One analogous situation might be when you're driving and coming up on an intersection where there is a stale green light. You may get ready for the light to change to yellow and then red. My research suggests that this preparation for the upcoming change and appropriate responses involves the same brain regions that are involved in actually pressing the brake (or gas) once the light turns red or yellow," said Schumacher.

Source: Georgia Institute of Technology

Explore further: Electrical stimulation in brain bypasses senses, instructs movement

Related Stories

Electrical stimulation in brain bypasses senses, instructs movement

December 7, 2017
The brain's complex network of neurons enables us to interpret and effortlessly navigate and interact with the world around us. But when these links are damaged due to injury or stroke, critical tasks like perception and ...

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Monkey feel, monkey do: Microstimulation in premotor cortex can instruct movement

December 7, 2017
Like an appliance with faulty wiring, injury and disease in the brain can result in lost connections, wreaking havoc on critical functions like perception and movement. Finding ways to get around those broken networks is ...

Want to listen better? Lend a right ear

December 6, 2017
Listening is a complicated task. It requires sensitive hearing and the ability to process information into cohesive meaning. Add everyday background noise and constant interruptions by other people, and the ability to comprehend ...

High-stress childhoods blind adults to potential loss

December 4, 2017
Adults who lived high-stress childhoods have trouble reading the signs that a loss or punishment is looming, leaving themselves in situations that risk avoidable health and financial problems and legal trouble.

Virtual reality users must learn to use what they see

December 4, 2017
Anyone with normal vision knows that a ball that seems to quickly be growing larger is probably going to hit them on the nose.

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.