Researchers discover new molecular path to fight autoimmune diseases

March 6, 2007
Researchers discover new molecular path to fight autoimmune diseases
Human regulatory T cells viewed using fluorescence microscopy after immunostaining (left). FOXP3 protein stained by anti-FOXP3 antibody within one regulatory T cell (right). Credit: Kathryn T. Iacono, University of Pennsylvania School of Medicine; PNAS

Multiple sclerosis, diabetes, and arthritis are among a variety of autoimmune diseases that are aggravated when one type of white blood cell, called the immune regulatory cell, malfunctions. In humans, one cause of this malfunction is when a mutation in the FOXP3 gene disables the immune cells’ ability to function.

In a new study published online this week in the Proceedings of the National Academy of Sciences, researchers at the University of Pennsylvania School of Medicine have discovered how to modify enzymes that act on the FOXP3 protein, in turn making the regulatory immune cells work better. These findings have important implications for treating autoimmune-related diseases.

"We have uncovered a mechanism by which drugs could be developed to stabilize immune regulatory cells in order to fight autoimmune diseases," says senior author Mark Greene, MD, PhD, the John Eckman Professor of Pathology and Laboratory Medicine. "There’s been little understanding about how the FOXP3 protein actually works." First author Bin Li, PhD, a research associate in the Greene lab has been working on elucidating this process since FOXP3’s discovery almost five years ago.

Li discovered that the FOXP3 protein works via a complex set of enzymes. One set of those enzymes are called histone deacetylases, or HDACs. These enzymes are linked to the FOXP3 protein in association with another set of enzymes called histone acetyl transferases that modify the FOXP3 proteins.

Li found that when the histone acetyl transferases are turned on, or when the histone deacetylases are turned off, the immune regulatory cells work better and longer. As a consequence of the action of the acetylating enzyme, the FOXP3 protein functions to turn off pathways that would lead to autoimmune diseases.

"I think this simple approach will revolutionize the treatment of autoimmune diseases in humans because we have a new set of enzymatic drug targets as opposed to the non-specific therapies we now use," says Greene. Non-specific therapies include the use of steroids and certain chemotherapy-like drugs that act on many cell types and have significant side effects.

"Before this work, FOXP3 was thought essential for regulatory T-cell function, but how FOXP3 worked was not known," says Li. "Our research identifies a critical mechanism. Based on this mechanism, treatments could be developed to modulate this regulatory cell population."

"In this line of investigation, we have learned how to turn on or off this regulatory immune cell population – which is normally needed to prevent autoimmune diseases – using drugs that are approved for other purposes, but work on these enzymes" notes co-author Sandra Saouaf, PhD, a research associate at Penn.

Li, Greene, Saouaf and Penn colleagues Wayne Hancock and Youhai Chen are now extending this research directly to several mouse models of autoimmune diseases.

Source: University of Pennsylvania School of Medicine

Explore further: Mechanism ID'd for benefit of stem cells in autoimmunity

Related Stories

Mechanism ID'd for benefit of stem cells in autoimmunity

May 2, 2012
(HealthDay) -- Bone marrow mesenchymal stem cells (BMMSCs) activate a mechanism involving coupling of FAS/FAS ligand to induce T cell apoptosis and immune tolerance, according to an experimental study published online April ...

New insight into immune tolerance furthers understanding of autoimmune disease

September 15, 2011
It is no easy task to preserve the delicate balance that allows us to maintain a strong immune system that can defend us from harmful pathogens, but that is sensitive enough to correctly identify and spare our own cells. ...

Study details 'rotten egg' gas' role in autoimmune disease

August 11, 2015
The immune system not only responds to infections and other potentially problematic abnormalities in the body, it also contains a built-in brake in the form of regulatory T cells, or Tregs. Tregs ensure that inflammatory ...

Gut bacteria may hold key to treating autoimmune disease

December 19, 2016
Defects in the body's regulatory T cells (T reg cells) cause inflammation and autoimmune disease by altering the type of bacteria living in the gut, researchers from The University of Texas Health Science Center at Houston ...

Specialized regulatory T cell stifles antibody production centers

July 25, 2011
A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, a team led by scientists at The University of Texas MD Anderson Cancer ...

Traffic cops of the immune system: Molecule called IKBNS in charge of regulatory immune cell maturation

November 29, 2012
A certain type of immune cell—the regulatory T cell, or Treg for short—is in charge of putting on the brakes on the immune response. In a way, this cell type might be considered the immune system's traffic cops.

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.