Neuroscientists find different brain regions fuel attention

March 30, 2007
Neuroscientists find different brain regions fuel attention
MIT graduate student Timothy J. Buschman, left, and Professor Earl Miller of the Department of Brain and Cognitive Sciences have found concrete evidence that two radically different brain regions play different roles in the different modes of attention. Credit: Donna Coveney

If you spotted an anaconda poised to strike, the signal to pay attention would originate in a different part of your brain than if you gazed at an anaconda in the zoo, neuroscientists at MIT's Picower Institute for Learning and Memory report in the March 30 issue of Science.

The work, which could have implications for treating attention deficit disorder (ADD), is the first concrete evidence that two radically different brain regions--the prefrontal cortex and the parietal cortex--play different roles in these different modes of attention.

What's more, when you focus your attention, the electrical activity in these two brain areas synchronizes and oscillates at different frequencies. "It's as if the brain is using two different stops on the FM radio dial for different types of attention," said study co-author Earl K. Miller, Picower Professor of Neuroscience.

Top to bottom

Brain signals related to the knowledge we have acquired about the world are called top-down. Signals related to incoming sensory information are called bottom-up.

"Loud, flashy things like fire alarms automatically grab our attention," Miller said. "By contrast, we choose to pay attention to certain things we think are important. We found two different modes of brain operation related to each, and they seem to originate in different parts of the brain. Further, the automatic (or bottom-up) versus willful (top-down) modes of attention seem to rely on two different frequency channels in the brain, suggesting that the brain might communicate in different frequency bands for different types of signals."

ADD involves being overly sensitive to the automatic attention-grabbers and less able to willfully sustain attention. "Our work suggests that we should target different parts of the brain to try to fix different types of attention deficits," Miller said.

"The downside of most psychiatic drugs is they are too broad," he continued. "It's like hitting the problem with a sledgehammer; you get the benefits but also many unintended consequences. Our work suggests that we may one day be able to figure out what is the exact problem with each individual and specifically target those shortcomings. And that is the ultimate goal in psychiatric intervention."

To address the fact that neural activity from the prefrontal and parietal cortices had never been directly compared, Miller and co-author Timothy J. Buschman, an MIT graduate student in the Department of Brain and Cognitive Sciences, conducted a series of experiments in which monkeys were engaged in different kinds of tasks. The researchers looked at activity in two areas of their brains simultaneously--the prefrontal cortex, also called the brain's executive because it is in charge of voluntary behavior, and the parietal cortex, which integrates sensory information coming from various parts of the body.

The monkeys had to pick out rectangles of certain colors and orientations on a video screen. Some of the rectangles popped out at them like the anaconda in the forest; others they had to search for.

The results support the idea that when something pops out at us, sensory cortical areas like the parietal cortex directs our eyes toward the stimulus. When we purposefully look for something, the prefrontal cortex is doing the driving.

"Taken together, these data suggest two modes of operation: When a stimulus pops out, a bottom-up, fast target selection occurs first in the posterior visual cortex; while in search mode, a top-down, longer latency target selection is reflected first in the prefrontal cortex," Miller said. "To our knowledge, these are the first direct demonstrations that these areas may have different contributions to these different modes of attention."

Source: MIT

Explore further: Selecting sounds: How the brain knows what to listen to

Related Stories

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

What's in a brain? Why networking might be the key to intelligence

December 11, 2017
What makes some people more clever than others? One of the central aims of cognitive neuroscience is to understand how the make-up of our brains dictates our intelligence – the general mental capability by which we reason, ...

Voices and emotions: the forehead is the key

December 13, 2017
Gestures and facial expressions betray our emotional state but what about our voices? How does simple intonation allow us to decode emotions – on the telephone, for example? By observing neuronal activity in the brain, ...

Recommended for you

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.