Researcher unveils pregnancy mystery

March 5, 2007

A Deakin University study has unlocked one of the many mysteries of pregnancy -- how the trace element copper is transported across the placenta. The findings provide a lead to the possible cause, treatment and prevention of a number of potentially fatal conditions.

Belinda Hardman completed the study for her PhD with Deakin’s Centre for Cellular and Molecular Biology under the supervision of Dr Leigh Ackland.

Ms Hardman is the first to find that copper is delivered to the developing foetus via specific transporters in the placenta that are regulated by the mother’s oestrogen and insulin levels. These findings have implications for better understanding preeclampsia, intrauterine growth retardation, the development of babies born to mothers with gestational diabetes and some genetic disorders.

“This is a very exciting finding because until now nobody understood how copper moved across the placenta from the mother to the foetus,” Ms Hardman said.

“The results provide a target for further research into a range of conditions that are believed to be related to copper metabolism such as preeclampsia and intrauterine growth retardation (a condition where the foetus doesn’t receive enough nutrition to grow properly).

“The study has implications for understanding genetic diseases such as Wilsons Disease—a copper toxicity disorder that affects the liver—and Menkes Disease—a copper deficiency disease that is fatal. It also provides a point of reference for looking at the development of babies born to mothers who had gestational diabetes because of the impact this illness has on maternal insulin levels.”

Using placental cells grown in culture to form a layer of what the placenta is like in the body, Ms Hardman was able to follow the flow of copper across the placenta and see the effect of hormones.

“Through studying the cell model I identified two transporters involved in the regulation of copper: one transporter took copper across the placenta to the foetus and a different transporter took any excess copper back to the mother. This system would ensure that there was never too much copper in the foetus,” she explained
“As pregnancy progresses and the nutritional needs of the foetus increase there is also a naturally occurring increase insulin and oestrogen in the mother. I was able to emulate this in the cell model and found that with the increase in hormones there was an increase in the copper going across the placenta and a decrease in the amount coming back, again ensuring adequate levels of copper available for the foetus.”

Despite being essential for life, not a lot is known about the metabolism of copper generally, let alone during pregnancy.

“Not many people know that without copper the human body cannot survive,” Dr Ackland explained.

“Copper is particularly necessary for brain and skin development. And while it is essential for life, too much can be deadly.

“For the most part people get enough copper in their diet so we do not believe that severe copper deficiency is a problem in the general population. However in pregnancy, when the needs of the mother change and there are the demands of the foetus, this is a critical time to understand copper metabolism.

“The foetus can face a range of problems without enough copper such as aneurysms, connective tissue disorders and mental retardation.”

While her study does not provide all the answers, Ms Hardman said it was an important step in better understanding copper metabolism and opened up opportunities for further research.

“My research does not go all the way to explaining the impact of copper metabolism in certain diseases. However, it is important because we need to understand the normal state before we can look further at the implications in copper-related diseases,” she said.

Source: Research Australia

Related Stories

Recommended for you

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

Team develops new approach to study long non-coding RNAs

April 19, 2018
Until recently, scientific research concentrated almost exclusively on the 2 percent of the genome's protein coding regions, virtually ignoring the other 98 percent - a vast universe of non-coding genetic material previously ...

Gene-edited stem cells show promise against HIV in non-human primates

April 19, 2018
Gene editing of bone marrow stem cells in pigtail macaques infected with simian/human immunodeficiency virus (SHIV) significantly reduces the size of dormant "viral reservoirs" that pose a risk of reactivation. Christopher ...

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

Leptin's neural circuit identified—Genome-editing study reveals how hormone helps prevent both obesity and diabetes

April 18, 2018
Revealing surprising answers to a long-standing enigma about the brain target of the anti-obesity hormone leptin, neuroscientists at Tufts University School of Medicine have used CRISPR genome editing to identify a neural ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.