Discovery Raises Questions About Some Therapies Designed to Treat Half of all Human Cancers

April 9, 2007

Biologists at the University of California, San Diego have uncovered a new way by which common mutants of a critical human tumor-suppressing gene can promote tumor progression, a finding which may explain why some cancer treatments targeting human cancers with these mutants have proven ineffective.

Their discovery, detailed in a paper published in this week's early online issue of the journal Nature Cell Biology, also raises questions about the effectiveness of certain cancer therapies that may be unintentionally enhancing rather than retarding the progression of human cancers by expressing the mutated cancer-promoting tumor suppressor.

"Our findings could explain the resistance of human cancer cells expressing the mutants of this important tumor suppressing gene, p53, to current cancer therapies," says Yang Xu, an associate professor of biology at UCSD who headed the research team, which included Hoseok Song, a postdoctoral fellow at UCSD, and Monica Hollstein, a collaborator at England's University of Leeds.

Scientists have long known that the p53 gene is critical in suppressing the formation of tumors in the human body. Over the past 20 years, researchers have also discovered that when the p53 gene is mutated, which occurs in about half of all cancer cases, the p53 mutant protein not only loses its tumor suppressing properties, but can promote the progression of cancer and the resistance of cancer cells to drug therapies.

"The expression of p53 mutants is correlated with the poor prognosis of cancer patients," notes Xu. "Therefore, it is critical to understand the gain of function of p53 mutants in promoting cancer and resistance to current cancer therapy."

Using mutant mice that express the most common forms of human p53 mutants, Xu's team found that the mutant proteins affected a multi-protein complex called Mre11complex that attaches to double-stranded breaks in DNA, the key genetic material of the cell, and participates in its repair. This prevented cells in the mice, as well as human cancer cells, from recognizing DNA damage, the scientists discovered, and led to genetic instabilities such as the translocation of chromosomes that can significantly increase genetic mutations in the cells, eventually promoting the growth of cancer cells.

"Current cancer treatments, including radiotherapy and many forms of chemotherapy, kill cancer cells by inducing DNA double-stranded break damage in their genomes," says Xu. "Our findings could explain why cancer cells with p53 mutants are resistant to such therapies."

In addition, because such treatments attempt to kill cancer cells by inducing genetic mutations through DNA strand-break damage, the findings suggest they may lead to genetic mutations if the DNA damage is not repaired efficiently and properly. In other words, they may be unintentionally enhancing rather than retarding cancer progression by inducing genetic mutations of the mutant cancer-promoting genes.

"These cancer treatments may be further promoting genetic instability in p53 mutant-expressing cancer cells because they lack the ability to recognize DNA damage," says Xu.

Source: University of California San Diego

Explore further: Nutlin-3, a p53-Mdm2 antagonist for nasopharyngeal carcinoma treatment

Related Stories

Nutlin-3, a p53-Mdm2 antagonist for nasopharyngeal carcinoma treatment

August 23, 2017
Nasopharyngeal carcinoma (NPC) is a common epithelial squamous cell head and neck cancer which is strongly associated with gamma herpes Epstein-Barr virus infection and the intake of salted fish. NPC incidence remain significantly ...

Trial to test new drug in patients with advanced cancer

August 23, 2017
A clinical trial to test a new cancer drug in patients with advanced solid tumours, launches in four centres across the UK, through Cancer Research UK's Centre for Drug Development.

Combination of traditional chemotherapy, new drug kills rare cancer cells in mice

August 16, 2017
An experimental drug combined with the traditional chemotherapy drug cisplatin, when used in mice, destroyed a rare form of salivary gland tumor and prevented a recurrence within 300 days, a University of Michigan study found.

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Hacking into normality: Gerard Evan

June 21, 2017
Currently Sir William Dunn Professor at the University of Cambridge, Gerard Evan has focused his research the MYC oncogene. His lab has recently started working on pancreatic and lung cancer, drawn in part by the excellent ...

Recommended for you

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

Brain powered: Increased physical activity among breast cancer survivors boosts cognition

September 19, 2017
It is estimated that up to 75 percent of breast cancer survivors experience problems with cognitive difficulties following treatments, perhaps lasting years. Currently, few science-based options are available to help. In ...

Researchers compose guidelines for handling CAR T cell side effects

September 19, 2017
Immune-cell based therapies opening a new frontier for cancer treatment carry unique, potentially lethal side effects that provide a new challenge for oncologists, one addressed by a team led by clinicians at The University ...

Bone marrow protein a 'magnet' for passing prostate cancer cells

September 19, 2017
Scientists at the University of York have shown that a protein in the bone marrow acts like a 'magnetic docking station' for prostate cancer cells, helping them grow and spread outside of the prostate.

Brain cancer breakthrough could provide better treatment

September 19, 2017
A new discovery about the most common type of childhood brain cancer could transform treatment for young patients by enabling doctors to give the most effective therapies.

A new paradigm for treating transcription factor-driven cancers

September 18, 2017
In the current issue of Proceedings of the National Academy of Sciences, researchers from Nationwide Children's Hospital describe a new paradigm for treating transcription factor-driven cancers. The study focuses on Ewing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.